• Title/Summary/Keyword: Feature Discrimination

Search Result 172, Processing Time 0.237 seconds

Speech/Music Discrimination Using Mel-Cepstrum Modulation Energy (멜 켑스트럼 모듈레이션 에너지를 이용한 음성/음악 판별)

  • Kim, Bong-Wan;Choi, Dea-Lim;Lee, Yong-Ju
    • MALSORI
    • /
    • no.64
    • /
    • pp.89-103
    • /
    • 2007
  • In this paper, we introduce mel-cepstrum modulation energy (MCME) for a feature to discriminate speech and music data. MCME is a mel-cepstrum domain extension of modulation energy (ME). MCME is extracted on the time trajectory of Mel-frequency cepstral coefficients, while ME is based on the spectrum. As cepstral coefficients are mutually uncorrelated, we expect the MCME to perform better than the ME. To find out the best modulation frequency for MCME, we perform experiments with 4 Hz to 20 Hz modulation frequency. To show effectiveness of the proposed feature, MCME, we compare the discrimination accuracy with the results obtained from the ME and the cepstral flux.

  • PDF

Development of Web Based Die Discrimination System by matching the information of vision with CAD Database (비전정보와 캐드 DB 의 매칭을 통한 웹기반 금형판별 시스템 개발)

  • 김세원;김동우;전병철;조명우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.277-280
    • /
    • 2004
  • In recent die industry, web-based production control system is applied widely because of the improvement of IT technology. In result, many researches are published about remote monitoring at a long distance. The target of this study is to develop Die Discrimination System using web-based vision, and CAD API when client discriminates die in process at a long distance. Special feature of this system is to use 2D vision image and to match with DB. We can get discrimination result enough to want with short time and a little low precision in web-monitoring by development of this system.

  • PDF

Discrimination of Cancer Cells by Dominant Feature Parameters Method in Thyroid Gland Cells (우세특징파라미터를 이용한 갑상선 암세포의 식별)

  • 나철훈;정동명
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.419-427
    • /
    • 1994
  • A new method of digital image analysis technique for discrimination of cancer cell was presented in this paper. The object image was the Thyroid Gland cells image that was diagnosed as normal and abnormal (two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. By using the proposed region segmentation algorithm, the cells were segmented into nucleus. The 16 feature parameters were used to calculate the features of each nucleus. As a consequence of using dominant feature parameters method proposed in this paper, discrimination rate of 91.11 % was obtained for Thyroid Gland cells.

  • PDF

Real Time Discrimination of 3 Dimensional Face Pose (실시간 3차원 얼굴 방향 식별)

  • Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

  • PDF

Real Time 3D Face Pose Discrimination Based On Active IR Illumination (능동적 적외선 조명을 이용한 실시간 3차원 얼굴 방향 식별)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.727-732
    • /
    • 2004
  • In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

Discrimination of Multi-PD sources using wavelet 2D compression for T-F distribution of PD pulse waveform (부분방전 펄스파형의 시간-주파수분포의 웨이블렛 2D 압축기술을 이용한 복합부분방전원의 식별)

  • Lee, K.W.;Kim, M.Y.;Baik, K.S.;Kang, S.H.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1784-1786
    • /
    • 2004
  • PD(Partial Discharge) signal emitted from PD sources has their intrinsic features in the region of time and frequency. STFT(Short Time Fourier Transform) shows time-frequency distribution at the same time. 2-Dimensional matrices(33${\times}$77) from STFT for PD pulse signals are a good feature vectors and can be decreased in dimension by wavelet 2D data compression technique. Decreased feature vectors(13${\times}$24) were used as inputs of Back-propagation ANN(Artificial Neural Network) for discrimination of Multi-PD sources(air discharge sources(3), surface discharge(1)). They are a good feature vectors for discriminating Multi-PD sources.

  • PDF

Discrimination of Air PD Sources Using Time-Frequency Distributions of PD Pulse Waveform (부분방전 펄스파형의 시간-주파수분포를 이용한 기중부분방전원의 식별)

  • Lee Kang-Won;Kang Seong-Hwa;Lim Ki-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.332-338
    • /
    • 2005
  • PD(Partial Discharge) signal emitted from PD sources has their intrinsic features in the region of time and frequency STFT(Short Time Fourier Transform) shows time-frequency distribution at the same time. 2-Dimensional matrices(33$\times$77) from STFT for PD pulse signals are a good feature vectors and can be decreased in dimension by wavelet 2D data compression technique. Decreased feature vectors(13$\times$24) were used as inputs of Back-propagation ANN(Artificial Neural Network) for discrimination of Multi-PD sources(air discharge sources(3), surface discharge(1)). They are a good feature vectors for discriminating Multi-PD sources in the air.

Discrimination of Unknown Digitally Modulated Signals (미지의 디지털 변조 신호 식별)

  • 신용조;이종헌;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.268-276
    • /
    • 1992
  • In this paper, we present an discrimination method of unknown digital modulated signals in noisy communication environment. We propose the use of an identification procedure based on time domain signal parameters. First, We extract instantaneous envelope. Frequency and difference phase as the basic feature informations from received signals. In order to identify signals using the extracted feature informations, we design the two dimensional feature space. The extracted feature infomations are mapped into2Dfeature space using 2D feature points. The procedure has been tested by simulations on a computer in noisy communication environment, and the considered signals are ASK-W, ASK-4, BPSK, QPSK, 8PSK, FSK, and QAM.

  • PDF

A Comparison of Speech/Music Discrimination Features for Audio Indexing (오디오 인덱싱을 위한 음성/음악 분류 특징 비교)

  • 이경록;서봉수;김진영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.10-15
    • /
    • 2001
  • In this paper, we describe the comparison between the combination of features using a speech and music discrimination, which is classifying between speech and music on audio signals. Audio signals are classified into 3classes (speech, music, speech and music) and 2classes (speech, music). Experiments carried out on three types of feature, Mel-cepstrum, energy, zero-crossings, and try to find a best combination between features to speech and music discrimination. We using a Gaussian Mixture Model (GMM) for discrimination algorithm and combine different features into a single vector prior to modeling the data with a GMM. In 3classes, the best result is achieved using Mel-cepstrum, energy and zero-crossings in a single feature vector (speech: 95.1%, music: 61.9%, speech & music: 55.5%). In 2classes, the best result is achieved using Mel-cepstrum, energy and Mel-cepstrum, energy, zero-crossings in a single feature vector (speech: 98.9%, music: 100%).

  • PDF

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.