• Title/Summary/Keyword: Feature Dimensional Reduction

Search Result 85, Processing Time 0.025 seconds

Study on Dimension Reduction algorithm for unsupervised clustering of the DMR's RF-fingerprinting features (무선단말기 RF-fingerprinting 특징의 비지도 클러스터링을 위한 차원축소 알고리즘 연구)

  • Young-Giu Jung;Hak-Chul Shin;Sun-Phil Nah
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.83-89
    • /
    • 2023
  • The clustering technique using RF fingerprint extracts the characteristic signature of the transmitters which are embedded in the transmission waveforms. The output of the RF-Fingerprint feature extraction algorithm for clustering identical DMR(Digital Mobile Radios) is a high-dimensional feature, typically consisting of 512 or more dimensions. While such high-dimensional features may be effective for the classifiers, they are not suitable to be used as inputs for the clustering algorithms. Therefore, this paper proposes a dimension reduction algorithm that effectively reduces the dimensionality of the multidimensional RF-Fingerprint features while maintaining the fingerprinting characteristics of the DMRs. Additionally, it proposes a clustering algorithm that can effectively cluster the reduced dimensions. The proposed clustering algorithm reduces the multi-dimensional RF-Fingerprint features using t-SNE, based on KL Divergence, and performs clustering using Density Peaks Clustering (DPC). The performance analysis of the DMR clustering algorithm uses a dataset of 3000 samples collected from 10 Motorola XiR and 10 Wintech N-Series DMRs. The results of the RF-Fingerprinting-based clustering algorithm showed the formation of 20 clusters, and all performance metrics including Homogeneity, Completeness, and V-measure, demonstrated a performance of 99.4%.

Properties of chi-square statistic and information gain for feature selection of imbalanced text data (불균형 텍스트 데이터의 변수 선택에 있어서의 카이제곱통계량과 정보이득의 특징)

  • Mun, Hye In;Son, Won
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • Since a large text corpus contains hundred-thousand unique words, text data is one of the typical large-dimensional data. Therefore, various feature selection methods have been proposed for dimension reduction. Feature selection methods can improve the prediction accuracy. In addition, with reduced data size, computational efficiency also can be achieved. The chi-square statistic and the information gain are two of the most popular measures for identifying interesting terms from text data. In this paper, we investigate the theoretical properties of the chi-square statistic and the information gain. We show that the two filtering metrics share theoretical properties such as non-negativity and convexity. However, they are different from each other in the sense that the information gain is prone to select more negative features than the chi-square statistic in imbalanced text data.

2D-MELPP: A two dimensional matrix exponential based extension of locality preserving projections for dimensional reduction

  • Xiong, Zixun;Wan, Minghua;Xue, Rui;Yang, Guowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2991-3007
    • /
    • 2022
  • Two dimensional locality preserving projections (2D-LPP) is an improved algorithm of 2D image to solve the small sample size (SSS) problems which locality preserving projections (LPP) meets. It's able to find the low dimension manifold mapping that not only preserves local information but also detects manifold embedded in original data spaces. However, 2D-LPP is simple and elegant. So, inspired by the comparison experiments between two dimensional linear discriminant analysis (2D-LDA) and linear discriminant analysis (LDA) which indicated that matrix based methods don't always perform better even when training samples are limited, we surmise 2D-LPP may meet the same limitation as 2D-LDA and propose a novel matrix exponential method to enhance the performance of 2D-LPP. 2D-MELPP is equivalent to employing distance diffusion mapping to transform original images into a new space, and margins between labels are broadened, which is beneficial for solving classification problems. Nonetheless, the computational time complexity of 2D-MELPP is extremely high. In this paper, we replace some of matrix multiplications with multiple multiplications to save the memory cost and provide an efficient way for solving 2D-MELPP. We test it on public databases: random 3D data set, ORL, AR face database and Polyu Palmprint database and compare it with other 2D methods like 2D-LDA, 2D-LPP and 1D methods like LPP and exponential locality preserving projections (ELPP), finding it outperforms than others in recognition accuracy. We also compare different dimensions of projection vector and record the cost time on the ORL, AR face database and Polyu Palmprint database. The experiment results above proves that our advanced algorithm has a better performance on 3 independent public databases.

Analysis of an Inverse Heat Conduction Problem Using Maximum Entropy Method (최대엔트로피법을 이용한 역열전도문제의 해석)

  • Kim, Sun-Kyoung;Lee, Woo-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.144-147
    • /
    • 2000
  • A numerical method for the solution of one-dimensional inverse heat conduction problem is established and its performance is demonstrated with computational results. The present work introduces the maximum entropy method in order to build a robust formulation of the inverse problem. The maximum entropy method finds the solution that maximizes the entropy functional under given temperature measurement. The philosophy of the method is to seek the most likely inverse solution. The maximum entropy method converts the inverse problem to a non-linear constrained optimization problem of which constraint is the statistical consistency between the measured temperature and the estimated temperature. The successive quadratic programming facilitates the maximum entropy estimation. The gradient required fur the optimization procedure is provided by solving the adjoint problem. The characteristic feature of the maximum entropy method is discussed with the illustrated results. The presented results show considerable resolution enhancement and bias reduction in comparison with the conventional methods.

  • PDF

Age Invariant Face Recognition Based on DCT Feature Extraction and Kernel Fisher Analysis

  • Boussaad, Leila;Benmohammed, Mohamed;Benzid, Redha
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.392-409
    • /
    • 2016
  • The aim of this paper is to examine the effectiveness of combining three popular tools used in pattern recognition, which are the Active Appearance Model (AAM), the two-dimensional discrete cosine transform (2D-DCT), and Kernel Fisher Analysis (KFA), for face recognition across age variations. For this purpose, we first used AAM to generate an AAM-based face representation; then, we applied 2D-DCT to get the descriptor of the image; and finally, we used a multiclass KFA for dimension reduction. Classification was made through a K-nearest neighbor classifier, based on Euclidean distance. Our experimental results on face images, which were obtained from the publicly available FG-NET face database, showed that the proposed descriptor worked satisfactorily for both face identification and verification across age progression.

A Dimension Reduction Method for High-Dimensional Image Patterns Using Relational Discriminant Analysis (Relational Discriminant Analysis를 이용한 고차원 영상패턴의 차원축소)

  • Kim, Sang-Woon;Koo, Byum-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.689-690
    • /
    • 2006
  • Relational discriminant analysis is a way of representing an object based on the dissimilarity measures among the prototypes extracted from feature vectors instead of the vectors themselves. Thus, by appropriately selecting a few number of representatives and by defining the dissimilarity measure, in this paper we propose a method of reducing the dimensionality and getting to achieve a better classification performance in both speed and accuracy. Our experimental results demonstrate that the proposed mechanism increases the performance as compared with the conventional approaches for samples involving artificial data sets.

  • PDF

Performance Improvement of Speaker Recognition Using Enhanced Feature Extraction in Glottal Flow Signals and Multiple Feature Parameter Combination (Glottal flow 신호에서의 향상된 특징추출 및 다중 특징파라미터 결합을 통한 화자인식 성능 향상)

  • Kang, Jihoon;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2792-2799
    • /
    • 2015
  • In this paper, we utilize source mel-frequency cepstral coefficients (SMFCCs), skewness, and kurtosis extracted in glottal flow signals to improve speaker recognition performance. Generally, because the high band magnitude response of glottal flow signals is somewhat flat, the SMFCCs are extracted using the response below the predefined cutoff frequency. The extracted SMFCC, skewness, and kurtosis are concatenated with conventional feature parameters. Then, dimensional reduction by the principal component analysis (PCA) and the linear discriminat analysis (LDA) is followed to compare performances with conventional systems under equivalent conditions. The proposed recognition system outperformed the conventional system for large scale speaker recognition experiments. Especially, the performance improvement was more noticeable for small Gaussan mixtures.

Cluster Feature Selection using Entropy Weighting and SVD (엔트로피 가중치 및 SVD를 이용한 군집 특징 선택)

  • Lee, Young-Seok;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.4
    • /
    • pp.248-257
    • /
    • 2002
  • Clustering is a method for grouping objects with similar properties into a same cluster. SVD(Singular Value Decomposition) is known as an efficient preprocessing method for clustering because of dimension reduction and noise elimination for a high dimensional and sparse data set like E-Commerce data set. However, it is hard to evaluate the worth of original attributes because of information loss of a converted data set by SVD. This research proposes a cluster feature selection method, called ENTROPY-SVD, to find important attributes for each cluster based on entropy weighting and SVD. Using SVD, one can take advantage of the latent structures in the association of attributes with similar objects and, using entropy weighting one can find highly dense attributes for each cluster. This paper also proposes a model-based collaborative filtering recommendation system with ENTROPY-SVD, called CFS-CF and evaluates its efficiency and utilization.

Fast Patch Retrieval for Example-based Super Resolution by Multi-phase Candidate Reduction (단계적 후보 축소에 의한 예제기반 초해상도 영상복원을 위한 고속 패치 검색)

  • Park, Gyu-Ro;Kim, In-Jung
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.264-272
    • /
    • 2010
  • Example-based super resolution is a method to restore a high resolution image from low resolution images through training and retrieval of image patches. It is not only good in its performance but also available for a single frame low-resolution image. However, its time complexity is very high because it requires lots of comparisons to retrieve image patches in restoration process. In order to improve the restoration speed, an efficient patch retrieval algorithm is essential. In this paper, we applied various high-dimensional feature retrieval methods, available for the patch retrieval, to a practical example-based super resolution system and compared their speed. As well, we propose to apply the multi-phase candidate reduction approach to the patch retrieval process, which was successfully applied in character recognition fields but not used for the super resolution. In the experiments, LSH was the fastest among conventional methods. The multi-phase candidate reduction method, proposed in this paper, was even faster than LSH: For $1024{\times}1024$ images, it was 3.12 times faster than LSH.

A Study on the Vibration Analysis of a Deckhouse of Fishing Vessel (어선의 갑판실의 진동 해석법에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.3
    • /
    • pp.193-210
    • /
    • 1991
  • For the deckhouse or superstructure, attention is directed to the reduction of vibration from a human susceptibility point of view. The two basic requirements for obtaining a low vibration level in the accommodation are to ensure that excitation forces from propeller and/or main engine are small and to avoid resonance excitation of the hull and superstructure. In recent years increased attention has been directed towards the problems of vibration and noise in deckhouse, which have caused major problems with regard to the environmental quality in the living quarters for crews. Accordingly, in this paper, the characteristic of the vibration of deckhouse of fishing boat, of which the length/height ratio is also relatively high, are studied systematically with regard to the shape and modelling of deckhouse based on finite element method of 1-dimensional, 2-dimensional and 3-dimensional model. This study is divided into 4-part. 1st part is the global deckhouse vibration, 2nd part is the local deckhouse vibration, 3rd part consists of the estimation for stiffness of foundational support and 4th part is the application to TUNA LONG LINER of 416 ton class. For the global vibration analysis, the severity of the vibration depends on the longitudinal shear and bending stiffness of the deckhouse, on the vertical deckhouse support(fore, aft and sides). However, even if the design is technically sound, vibration problems may arise due to vertical or longitudinal hull girder or afterbody resonances. Author applied the method of this study to the analysis of, deep-sea fishing vessel of G.T. 416 ton class with relatively low height and long deckhouse, and investigated the vibrational characteristic of the fishing vessel with earlier structural feature. According to this investigation, the vibration, response of above vessel was confirmed of which main hull and deckhouse behave as one body. It is at the bottom of vibrational trouble which a accommodation part of the fishing vessel is raised, that is the local vibration for side wall, fore-aft wall and deck plate of deckhouse rather than thief fect of fore-aft vibration of deckhouse for above fishing vessel. and the resonance of main hull, deckhouse and driving system such as the main engine, propeller in exciting source is mainly brought up as the trouble.

  • PDF