• Title/Summary/Keyword: Feasible region

Search Result 210, Processing Time 0.019 seconds

Feasible Scaled Region of Teleoperation Based on the Unconditional Stability

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • Applications of scaled telemanipulation into micro or nano world that shows many different features from directly human interfaced tools have been increased continuously. Here, we have to consider many aspects of scaling such as force, position, and impedance. For instance, what will be the possible range of force and position scaling with a specific level of performance and stability\ulcorner This knowledge of feasible staling region can be critical to human operator safety. In this paper, we show the upper bound of the product of force and position scaling and simulation results of 1DOF scaled system by using the Llewellyn's unconditional stability in continuous and discrete domain showing the effect of sampling rate.

Opportunistic Scheduling with QoS Constraints for Multiclass Services HSUPA System

  • Liao, Dan;Li, Lemin
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.201-211
    • /
    • 2007
  • This paper focuses on the scheduling problem with the objective of maximizing system throughput, while guaranteeing long-term quality of service (QoS) constraints for non-realtime data users and short-term QoS constraints for realtime multimedia users in multiclass service high-speed uplink packet access (HSUPA) systems. After studying the feasible rate region for multiclass service HSUPA systems, we formulate this scheduling problem and propose a multi-constraints HSUPA opportunistic scheduling (MHOS) algorithm to solve this problem. The MHOS algorithm selects the optimal subset of users for transmission at each time slot to maximize system throughput, while guaranteeing the different constraints. The selection is made according to channel condition, feasible rate region, and user weights, which are adjusted by stochastic approximation algorithms to guarantee the different QoS constraints at different time scales. Simulation results show that the proposed MHOS algorithm guarantees QoS constraints, and achieves high system throughput.

  • PDF

Small Bands Enclosing a Set of Spherical Points and Local Accessibility Problems in NC Machining (구상의 점 집합을 포함하는 소밴드와 수치제어 절삭가공의 접근성 문제)

  • Ha, Jong-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2188-2195
    • /
    • 2000
  • This paper deals with the problem of determining small-bands enclosing a given set of points on the sphere. The small-band is a spherical region, whose boundary is composed of two circles, and which does not contain any great circle. It is a kind of domains that is derived from formalizing the local accessibility problems for 3-axis NC machining into sperical containment problems so as to avoid the grouping. It also can be generated in 4- and 5-axis machine. When a set of points U and the size of a great-band are given, the methods for computing a feasible band and all feasible bands enclosing U in O(n) and O(n log n) time have been suggested, respectively. The methods can be applied into the cases of small bands since the solution region may contain holes. In this paper, we concentrate on the method for determining the smallest small-band enclosing U and suggest an O(n long n) time algorithm, where n is the number of points on the sphere.

  • PDF

Quasiconcave Bilevel Programming Problem

  • Arora S.R.;Gaur Anuradha
    • Management Science and Financial Engineering
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2006
  • Bilevel programming problem is a two-stage optimization problem where the constraint region of the first level problem is implicitly determined by another optimization problem. In this paper we consider the bilevel quadratic/linear fractional programming problem in which the objective function of the first level is quasiconcave, the objective function of the second level is linear fractional and the feasible region is a convex polyhedron. Considering the relationship between feasible solutions to the problem and bases of the coefficient submatrix associated to variables of the second level, an enumerative algorithm is proposed which finds a global optimum to the problem.

Interference-Free Tool Path with High Machinability for 4- and 5-Axes NC Machining of Free-Formed Surfaces (공구간섭과 절삭성을 고려한 자유 곡면의 4, 5축 NC 가공을 위한 공구 경로 산출)

  • 강재관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.146-153
    • /
    • 1998
  • NC machines with 4 or 5 axes are capable of various tool approach motions, which makes interference-free and high machinablity machining possible. This paper deals with how to integrate these two advantages (interference-free and high machinability machining) in multi-axes NC machining with a ball-end mill. Feasible tool approach region at a point on a surface is first computed, then among which an approach direction is determined so as to minimize the cutting force required. Tool and spindle volumes are considered in computing the feasible tool approach region, and the computing time is improved by trans-forming surface patches into minimal enclosing spheres. A cutting force prediction model is used for estimating the cutting force. The algorithm is developed so as to be applied to 4- or 5-axes NC machining in common.

  • PDF

Optimal Designs for the Experiments related with Marine Environment (해양환경에 관련된 실험을 위한 최적실험계획)

  • 김재환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • This paper develops a new heuristic, the Excursion Algorithm(EA), for constructing optimal designs for the experiments related with marine environment. The proposed EA consists of three parts: 1) construction of an initial feasible solution, 2) excursions over a bounded region, and 3) stopping rules. It is the second part that distinguishes the EA from the other existing heuristic methods. It turns out that excursions over a bounded feasible and/or infeasible region is effective in alleviating the risks of being trapped at a local optimum. Since this problem is formulated for the first time thesis, other heuristic algorithms do not exist. Therefore, global optimal solutions are obtained by complete enumeration for some cases, and the performance of the EA is evaluated in terms of solution quality. Computational results show that the proposed EA is effective in finding good(or, in many cases, global) solutions to the constrained optimal experimental design problems.

  • PDF

Identification of Feasible Scaled Teleoperation Region Based on Scaling Factors and Sampling Rates

  • Hwang, Dal-Yeon;Blake Hannaford;Park, Hyoukryeol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The recent spread of scaled telemanipulation into microsurgery and the nano-world increasingly requires the identification of the possible operation region as a main system specification. A teleoperation system is a complex cascaded system since the human operator, master, slave, and communication are involved bilaterally. Hence, a small time delay inside a master and slave system can be critical to the overall system stability even without communication time delay. In this paper we derive an upper bound of the scaling product of position and force by using Llewellyns unconditional stability. This bound can be used for checking the validity of the designed bilateral controller. Time delay from the sample and hold of computer control and its effects on stability of scaled teleoperation are modeled and simulated based on the transfer function of the teleoperation system. The feasible operation region in terms of position and force scaling decreases sharply as the sampling rate decreases and time delays inside the master and slave increase.

  • PDF

On visualization of solutions of the linear Programming (선형계획법의 해의 이동에 관한 시각화)

  • 이상욱;임성묵;박순달
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • This paper deals with the visualization method of solutions of the linear programming Problem. We used the revised simplex method for the LP algorithm. To represent the solutions at each iteration, we need the informations of feasible legion and animated effect of solutions. For the visualization in high dimension space, we used the method of Projection to the three dimensions if the decision variable vector is over three dimensions, and we studied the technique of preserving original Polyhedral information such as the number of vertices. In addtion, we studied the method of visualizing unbounded feasible region and the adjacency relationship of the vortices welch is Indispensable to cisualize feasible legion.

A LINE SEARCH TRUST REGION ALGORITHM AND ITS APPLICATION TO NONLINEAR PORTFOLIO PROBLEMS

  • Gu, Nengzhu;Zhao, Yan;Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.233-243
    • /
    • 2009
  • This paper concerns an algorithm that combines line search and trust region step for nonlinear optimization problems. Unlike traditional trust region methods, we incorporate the Armijo line search technique into trust region method to solve the subproblem. In addition, the subproblem is solved accurately, but instead solved by inaccurate method. If a trial step is not accepted, our algorithm performs the Armijo line search from the failed point to find a suitable steplength. At each iteration, the subproblem is solved only one time. In contrast to interior methods, the optimal solution is derived by iterating from outside of the feasible region. In numerical experiment, we apply the algorithm to nonlinear portfolio optimization problems, primary numerical results are presented.

  • PDF

An Effective Design Method of Stamping Process by Feasible Formability Diagram (가용 성형한계영역을 이용한 스템핑 공정의 효율적 설계방법)

  • Cha, Seung-Hoon;Lee, Chan-Joo;Lee, Sang-Kon;Kim, Bong-Hwan;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.108-115
    • /
    • 2009
  • In metal forming technologies, the stamping process is one of the significant manufacturing processes to produce sheet metal components. It is important to design stamping process which can produce sound products without defect such as fracture and wrinkle. The objective of this study is to propose the feasible formability diagram which denotes the safe region without fracture and wrinkle for effective design of stamping process. To determine the feasible formability diagram, FE-analyses were firstly performed for the combinations of process parameters and then the characteristic values for fracture and wrinkle were estimated from the results of FE-analyses based on forming limit diagram. The characteristic values were extended through training of the artificial neural network. The feasible formability diagram was finally determined for various combinations of process parameters. The stamping process of turret suspension to support suspension module was taken as an example to verify the effectiveness of feasible formability diagram. The results of FE-analyses for process conditions within fracture and wrinkle as well as safe regions were in good agreement with experimental ones.