A LINE SEARCH TRUST REGION ALGORITHM AND ITS APPLICATION TO NONLINEAR PORTFOLIO PROBLEMS

  • Gu, Nengzhu (School of Business, University of Shanghai for Science and Technology) ;
  • Zhao, Yan (School of Business, University of Shanghai for Science and Technology) ;
  • Gao, Yan (School of Business, University of Shanghai for Science and Technology)
  • Published : 2009.01.31

Abstract

This paper concerns an algorithm that combines line search and trust region step for nonlinear optimization problems. Unlike traditional trust region methods, we incorporate the Armijo line search technique into trust region method to solve the subproblem. In addition, the subproblem is solved accurately, but instead solved by inaccurate method. If a trial step is not accepted, our algorithm performs the Armijo line search from the failed point to find a suitable steplength. At each iteration, the subproblem is solved only one time. In contrast to interior methods, the optimal solution is derived by iterating from outside of the feasible region. In numerical experiment, we apply the algorithm to nonlinear portfolio optimization problems, primary numerical results are presented.

Keywords

References

  1. M. Bartholomew-Biggs, Nonlinear Optimization with Financial Application, Kluwer Aca- demic Publishers, Boston/Dordrecht/London, 2005.
  2. M. J. Best and J. Hlouskova, An algorithm for portfolio optimization with transaction costs, Manage. Sci. 51 (2005), 1676-1688. https://doi.org/10.1287/mnsc.1050.0418
  3. M. J. Best and J. Hlouskova, Quadratic programming with transaction costs, Comput. Oper. Res. 35 (2008), 18-33. https://doi.org/10.1016/j.cor.2006.02.013
  4. M. J. Best and J. Hlouskova, An algorithm for portfolio optimization with variable transaction costs, part 1: theory, J. Optim. Theory Appl. DOI:10.1007/s10957-007-9252-7.
  5. M. J. Best and J. Hlouskova, An algorithm for portfolio optimization with variable transaction costs, part 2: computational analysis, J. Optim. Theory Appl. DOI:10.1007/s10957-007-9249-2.
  6. A. J. Brogan and S. Stidham Jr., Non-separation in the mean-lower-partial-moment portfolio optimization problem, Euro. J. Oper. Res. 184 (2008), 701-710. https://doi.org/10.1016/j.ejor.2006.11.028
  7. R. H. Byrd, R. B. Schnabel and G. A. Shultz, A trust region algorithm for nonlinearly constrained optimization, SIAM J. Numer. Anal. 24 (1987), 1152-1170. https://doi.org/10.1137/0724076
  8. R. H. Byrd, J. C. Gilbert and J. Nocedal, A trust region method based on interior point Ttechniques for nonlinear programming, Math. Prog. 89 (2000), 149–185. https://doi.org/10.1007/PL00011391
  9. M. El-Alem, A robust trust-region algorithm with a non-monotonic penalty parameter scheme for constrained optimization, SIAM J. Optim. 5 (1995), 348-378. https://doi.org/10.1137/0805018
  10. E. M. Gertz, Combination Trust-region Line Search Methods for Unconstrained Optimization, University of California, San Diego, 1999.
  11. E. M. Gertz and P. E. Gill, A primal-dual trust region algorithm for nonlinear optimization, Math. Prog. 100 (2004), 49-94.
  12. N. Gu and J. Mo, Incorporating nonmonotone strategies into trust region method for unconstrained optimization, Comput. Math. Appl. DOI:10.1016/j.camwa.2007.08.038.
  13. H. Jiang and L. Qi, Globally and superlinearly convergent trust-region algorithm for convex SC1-minimization problems and its application to stochastic programs, J. Optim. Theory Appl. 90 (1996), 649-669. https://doi.org/10.1007/BF02189800
  14. H. Jiang and L. Qi, Local uniquences and iterative methods for nonsmooth variational inequalities, J. Math. Analys. Appl. 196 (1995), 314-331. https://doi.org/10.1006/jmaa.1995.1412
  15. M. S. Lobo, M. Fazel and S. Boyd, Portfolio optimization with linear and fixed transaction costs, Ann. Oper. Res. 152 (2007), 341-365. https://doi.org/10.1007/s10479-006-0145-1
  16. H. M. Markowitz, Portfolio selection, J Finance, 6 (1952), 77-91.
  17. J. Mo, K. Zhang and Z. Wei, A nonmonotone trust region method for unconstrained optimization, Appl. Math. Comput. 171 (2005), 371-384. https://doi.org/10.1016/j.amc.2005.01.048
  18. J. Nocedal and Y. Yuan, Combining trust region and line search techniques, in: Y. Yuan eds, Advances in Nonlinear Programming, Kluwer Academic Publishers, Dordrecht, (1996), 153-175.