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A LINE SEARCH TRUST REGION ALGORITHM AND ITS
APPLICATION TO NONLINEAR PORTFOLIO PROBLEMS!

NENGZHU GU*, YAN ZHAO AND YAN GAO

ABSTRACT. This paper concerns an algorithm that combines line search
and trust region step for nonlinear optimization problems. Unlike tradi-
tional trust region methods, we incorporate the Armijo line search tech-
nique into trust region method to solve the subproblem. In addition, the
subproblem is solved accurately, but instead solved by inaccurate method.
If a trial step is not accepted, our algorithm performs the Armijo line search
from the failed point to find a suitable steplength. At each iteration, the
subproblem is solved only one time. In contrast to interior methods, the
optimal solution is derived by iterating from outside of the feasible region.
In numerical experiment, we apply the algorithm to nonlinear portfolic
optimization problems, primary numerical results are presented.
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1. Introduction

Consider the following optimization problem

min  f(z) (1)
s.1. r € X,

where f(z) is a nonlinear function and X is a set that contains linear constraint
conditions. In practice, many problems can be formulated as (1). For instance,
portfolio problems, see section 4. In this paper, we assume that f is a convex
twice continuously differentiable function and X = {z : Az < b}, where A is an
(m, n) matrix, b is an m-vector, z is an n-vector. For convenience of notation, we
denote the derivative of f(z) by ¢ and V f(z) alternatively. We further assume
that g is locally Lipschitzian and, for some 7 € X, {z € X : f(z) < f(Z)} is
bounded. Obviously, problem (1) has optimal solution.
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It has been shown that trust region methods are desirable techniques for
solving problem (1). For example, Byrd et al. {7], El-Alem [9], Gertz and Gill
[11] and Byrd et al. [8]. In [13], Jiang and Qi proposed a Newton trust region
algorithm for Convex SC! minimization problems. They gave priority to use
Newton method to solve a relaxed problem (6), then let #3411 = zx + di if line
search condition f(zx+1) — f(zx) < oV f(zr)Tdy is satisfied. Otherwise, they
performed a trust region strategy to solve the subproblem (4). Our algorithm is
inspired by their approach, the difference between our algorithm and Jiang-Qi
algorithm is that we only need to solve the subproblem {4). If a trial step is
not accepted, we incorporate the Armijo line search into the iteration, instead
of resolving the subproblem by reducing the trust region radius.

This paper is organized as follows. In Section 2, we describe a algorithm for
problem (1) that combines the Armijo line search technique and trust region
step. In Section 3, we establish the global convergence for the algorithm. In
Section 4, we apply the algorithm to nonlinear portfolio optimization problems
and give a numerical example. Finally, our conclusions are given in Section 5.

2. Algorithm

Since problem (1) is a convex programming, solving (1) is equivalent to find
z* € X such that, for any z € X,

9(z*)F (z —z*) 20, (2)
or, equivalently, to find z* € X such that
— g(z*) € Ng(z*), @)

where N, (z*) denotes the normal cone of the set X at z*, that is,
Ny(z*) ={d: dT(z — z*) < 0},Vzr € X.

Similar to [13], we use dpg(z) to denote the set of matrices G, where G is equal
to the limit of some convergent sequence {Vg(#x)} such that each 2 is a point in
" at which g is F-differentiable and the sequence {3} converges to . Notice
that g is locally Lipschitzian, thus 8gg(z) is well defined. Furthermore, the
convex hull of 9pg(x) is the Clarke generalized Jacobian dg(z), both d¢(x) and
dpg(x) are nonempty and bounded.

Let B = G+ B, where G € Opg(z), B > 0 and [ is the n X n identity matrix.
The subproblem of (1) is formulated as

) 1
min grd+ §dTBkd = ¢r(d) (4)
s.t. Il < Ag, de X\z,

where Ay > 0 is a trust region radius. A relaxed problem of {(4) is given as

1
i ‘3 ZdT =
min gipd+ 2d Byd = ¢p(d) , (5)
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st de X\z.

Due to f(z) is convex and g is locally Lipschitzian, it has been shown in [14]
that every G € dpg(z) is a symmetric and positive semidefinite matrix for all
z € R*. This implies that B is positive definite matrix, thus (4) is strictly convex
programming problem. There exists a unique solution for (4).

Traditional trust region methods solve an optimization problem iteratively.
At each iteration, a trial step dy is generated by solving the subproblem (4). If
the ratio between the actual reduction and the predicted reduction is not less
than a given constant, then the trial step is accepted. Otherwise, the subproblem
(4) is resolved by reducing trust region radius until an acceptable step is found.
Therefore, the subproblem may be solved several times at each iteration before
an acceptable step is found, which can considerably increase the total cost of
computation for large scale problems.

To improve efficiency of trust region methods, in the pioneering work [18],
Necedal and Yuan presented a algorithm that combines trust region step with a
backtrack line search technique for unconstrained optimization problem. When
a trial step is not acceptable, their method performs a line search to find an
iterative point instead of resolving the subproblem. Under reasonable condi-
tions, they proved the convergence results. Numerical results showed that the
combination of trust region step with line search is encouraging. More papers
incorporated line searches into trust region methods can be seen in [17], [10-12],
etc. Motivated by these proposed papers, we introduce an improved trust region
method, our algorithm can be viewed as a combination of traditional trust re-
gion method and the Armijo line search for portfolio optimization problems. In
contrast to interior methods, the optimal solution is derived by iterating from
outside of the feasible region in our algorithm.

Since By, is a positive definite matrix, we can perform an accurate solution
for trust region subproblem. To ensure that d; is not outside of a trust region,
we compute di by

{ =B ox, if |1Bglgwll < B,

- B8 B ; = 6
i “"B,?fgk”Bklgk, if 1By gkl > Ax. (6)

This mechanism implies that in our algorithm the following condition

¢k(0) — r(di) = 7|\ gxll min{Ay, ||gxll/ | Bkll},

where 7 € (0,1) is a constant, is need not to be satisfied, which is an essential
condition of inaccurate method for solving trust region subproblem.

Although several algorithms that combine trust region step with line searches
have been presented in [10-12] and [17-18] respectively, these algorithms are
proposed for unconstrained optimization problems. In addition, Approximate
Hessian matrices By can not guaranteed to be positive definite in these algo-
rithms, therefore inaccurate methods are used to solved subproblems in these
algorithms. Compared with [10-12] and [17-18], the different points are that
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our algorithm is proposed for constrained optimization, and the subproblem is
solved by accurate method.
Let the following notation to denote the distance between a set § C R" and
a vector z € R"
dist{z, §} = inf{llz -yl : y € S},
where || - || denotes a norm in R". We now state our algorithm as follows.
Algorithm 1

Step 1: Give z; € R, A; > 0. Choose constants 0y, ¢1, ¢z, it, such that
Bo >0,0< e <1< ¢andpe€ (0,1). Set k:=1. Compute {1 =
diSt{—g(Zl), Nm(l‘l)}

Step 2: Check termination, if x;, satisfies a prescribed stopping condition,
then stop.

Step 3: Solve (4) accurately.

Step 4: Compute p, by

_ flzx) = f(@k + di)
T k0 - kldr) @

If pr 2 i, go to Step 5. Otherwise, compute ik, the minimum nonnega-
tive integer ¢ satisfies

Flk + Xedy) < fi + OX'gf dis. (8)
Set o = A+,
Th4+1 = Tk + oxdp, : (9)
and
Agi1 € [|zhg1 — zi]], c1 k], (10)
go to Step 6.
Step 5: Set
Thy1 = Tk + di, (11)
and
= Akv lf ”dk‘" < Ak,
A . 12
ket { € [Ag, coAg], if |ldill = Ak (12)
Step 6: Compute ¢ = dist{—g(zx+1), No(Tr+1)}, let
_J 6 if (< %Ck,
G = { Ck> Otherwise. (13)

Update the parameter S

1 - 1
- ’2’61’67 Zf Ck+1 < ’§Ck7
Br+1 = { B, Otherwise. (14)
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Step 7: Update the symmetric matrix Byii = Gre1 + Bk41l , set k :=
k+1, go to Step 2.

Remark 1. To update the matrix By, we introduce the parameters B and
Ck, Cx denotes the distance between a point and a polyhedron. The aim of the
algorithm is to have ¢z — 0 as k — oo. Then, by (3), a solution of (1) is
approached.

3. Global Convergence

We show that the accumulation points of sequence {zy} generated by Al-
gorithm 1 are the optimal solutions, by this way the convergence property of
Algorithm 1 can be established. We now turn to analyze the convergence be-
havior of Algorithm 1.

Remark 2. Recall that for Z € X, {z € X : f(z) < f(Z)} is bounded and f
is twice continuously differentiable, the two conditions imply that there exists a
constant M > 0, such that

V3£ (2)|| < M, VreX. (15)
For simplicity, we define two index sets as follows:
I={k:py>p}and J={k:px < p}.

We first prove that Algorithm 1 is well defined. To this end, we prove that
there exists an integer ix such that the line search (8) holds.

Lemma 1. Assume that sequence {zy} is generated by Algorithm 1. Then line
search (8) terminates in finite steps, i.e., there exists an integer iy such that the
line search (8) holds, for any k € J.

Proof. Suppose first, for the purpose of deriving a contradiction, that there
exists k£ € J such that

flxr + MNedy) > fo +O6N'gi di, Vi,

which implies

flzx + Ndy) — fi
2\
Since f is differentiable, taking limit with ¢ — oo, we have

oF dy, > 69F di. (16)

> 5g£dk.

Since & € (0,1/2), it follows from (16) that g dy > 0. However, we have from
Step 3 of Algorithm 1 and the definition of dy (6) that g} dx < 0. Therefore, for
any k € J, there exists ix > 0 such that (8) holds. O

In order to show that stepsize ay, is bounded, we now cite an important lemma
from [13].
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Lemma 2. If there is an accumulation point * of {xr} such that =™ is not an
optimal solution of (1), then there exists a positive number 3 such that

Br 2B
for all k.

Proof. See Lemma 3.1 in [13]. 0

Lemma 3. Assume that sequence {z1} is generated by Algorithm 1. Then the
stepsize o satisfies

(1-9)A8
— 17
o > M { )
forallkeJ.
Proof. Due to Step 4 of Algorithm 1, we have
flog + )\—lakdk) > f+ 5)\—1O:kggdk. (18)

By Taylor’s expansion, we obtain
1
flze + A lowdi) = fi + A okgl di + EA‘Zaﬁdg VE3f(r)de,  (19)
where &; € (z&, zr + A" lardy). Relations (18), (19) and (15) ensure that
1
A angid < A g di + S22k M | d))”.
Consequently,
1
—(1-8)gide < ék_lakMdeﬁ? (20)
Using the definition of dy (8), we have
1
— gk dy — é*dekdk > 0. (21)
Combining (21) and (20), we obtain
(1 = 8)dE Brdy, < A~ ap M ||dg||*. (22)
We can deduce from Lemma 2 that
Blldl|® < di Brdy.
Thus, inequality (22) implies that (17) holds. O

Having proved that Algorithm 1 is well-defined, we now obtain an important
proposition.

Proposition 1. Suppose that sequence {1} is generated by Algorithm 1. Then
the following two inequalities hold.

(1) flzx +di) — f(zk) < Ipglds for kel

(2) fzx + sk) — fzx) < 0gL sk, for k € J, where s = oyd.
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Proof. (1): If k € I, we have from the definition py, (7) that f(xg) — f(zx +di) >
w(ér(0) — ¢ (dg)). Since dj is computed by Newton step, if dx = —B;lgk, we

obtain that ¢r(0) — dr(dy) = —%g%dk. If dp = _WB,:AT‘CngBk_lg’“’ let “—B—kﬁ’“m =

Yk. Obviously, v € (0,1]. Therefore, ¢(0) — ¢r(di) = —(1 — %fyk)g{dk. Since
(1- %’yk) > %, this deduce that f(zg) — f(zk + di) > —%uggdk.

(2): If k € J, since Algorithm 1 is well-defined, we can deduce that the
inequality holds from the Armijo line search (8). O

Based on Proposition 1 and Lemma 3, we establish the global convergence
for Algorithm 1. To this end, we first recall two important propositions in [13].

Proposition 2. Suppose that there are infinitely many Newton steps in the
algorithm. Then any accumulation point of {xx} is an optimal solution of (1).

Proof. See Proposition 3.2 in [13]. 0

Proposition 3. If only finitely many Newton steps are taken in the algorithm,
then all the accumulation points of {zx} are optimal solutions of (1).

Proof. See Proposition 3.3 in [13]. o

Obviously, applying Propositions 2 and 3, we can obtain the global conver-
gence theorem for the algorithm.

Theorem 1. Suppose sequence {x1} is generated by Algorithm 1. Then all the
accumulation points are optimal solutions of (1).

4. Applications and numerical examples

In this section, we apply Algorithm 1 to nonlinear portfolio optimization prob-
lems and present preliminary computational results for Algorithm 1. Portfolio
optimization problems have received considerable attention since the seminal
work introduced by Markowitz [16]. Recently, there are still many papers de-
voted to portfolio problems (e.g. Lobo et al. [15], Brogan and Stidham Jr. [6],
Best and Hlouskova [2-5]). Most of these portfolio optimization problems can be
formulated as a nonlinear optimization problem with nonlinear objective func-
tion and linear constraint conditions. In order to obtain a general formulation of
portfolio optimization, we first recall several proposed portfolio selection models.

The Markowitz model. Portfolio optimization is a powerful tool for financial
decision making under uncertainty. Markowitz first presented a model for port-
folio selection in an uncertain environment with various simplifications. Let us

recall the basic formulation: z;,4 = 1,---,n represent the proportion of fund
n

invested in the n investments, 3. z; = eTz = 1, where e = (1,1,---,1)T € ®™.
i=1

The unit investment in the it® asset provides the random return p; over the
considered fixed period. Assume that probability distribution of the vector
p of returns of all assets is characterized by a known vector of expected re-
turns E(p) = r and by a covariance matrix C = cov(p;,pj);%,J = 1,---,n
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whose main diagonal consists of variances of individual returns. The return

n
of the investment is r(z) = 5 7z; = r'x, and the risk of the investment is
i=1 :
o%(z) = Y cov(pi, pj)ziz; = 7 Cx. If the financial object is to maximize the

z!J
expected return of a portfolio of investments while minimizing the risk posed to
the investors, then the decision making problem can be formulated as

min  7z7Cz —rTx (23)
8.t. efz = 1,
z; >0, t=1,2,-++,m,

where 7 > 0 is a weighting parameter.

Portfolio models with transaction costs. Transaction costs have not been
considered in classical Markowitz model. However, transaction costs are essential
element of any realistic investment portfolio optimization. Recently, Lobo et al.
[15} proposed a portfolio optimization model with linear and fixed transaction
costs, which is given as

max 4l (w+z) (24)
s.t. elz+ P(z) <0, '
w+z €S,

where 4 € R" is the vector of expected returns on each asset, w € R™ is the vector
of current holdings in each asset, x € R" is the vector of amounts transacted
in each asset, ¥(z) : ®* — R is the transaction cost function, § C R" is the
set of feasible portfolio. In their model, 1(z) can be chosen as a linear function
such that the budget (or self-financing) constraint e’z + ¥(z) < 0 is convex,
risk measure is expressed as a second-order cone constraint || $2%(w + z)2 <
Omaz in S, Let z; is denoted by z; = a:f — x; , where x;" and z; denote
the purchased positions and sold positions of asset i, respectively. If risks are
measured by variance, the financial object is to minimize possible portfolio risks
and transaction costs and, at the same time, maximize expected return. A
nonlinear portfolio optimization is formulated as

min T(w—i-a:;"—r;)TZ(w—i—:cf—x{)—&T(w-{—x“L—3:‘)

n
+ (kfzf +s727)

[E)
n

s.t. efzt —27)+ Z(nj’xf +k;2;) <0, (25)
g1
w4zt —27 >0,
zt >0,27 >0,

where s+ and k™ are the cost rates associated with buying and selling.
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In [2], Best and Hlouskova considered the case when translation costs are de-

noted by piecewise nonlinear convex functions, they presented a portfolio model
as follows

K K
min  F(z) +2pk(x+k) +qu($—k)
k=1

k=1
K K
st.  z-— Z(m+k) + Z(m‘k) =1,
k=1 k=1
Az <b, (26)
0 -~ + -~ ek, k = 1; 7K)
0<z*<dk, k=1,---,K

where —F () is an expected utility function, A is an (m,n) matrix, b is an m-
vector, z is an n-vector. z1* denote the amount purchased according to the kth
transaction cost function p*(z**). =% denote the amount sold according to the
kth transaction cost function ¢*(z~*). # is the current holdings. K denotes the
number of piecewise functions. e and d are upper bounds.

Formulations (23), (25), (26) can be reformulated as the form given by prob-
lem (1). Without loss of generality, model (25) is used in the experiment. We
cite an numerical example from Bartholomew-Biggs [1, p.137]. Expected returns
for each asset are

~0.028,0.366,0.231, —0.24, 0.535, —0.17, —0.881, 0.859, 0.128, 0.087,

and the elements of the variance-covariance matrix are

1.026 -0.434 0.020 —0.197 —0.031 —0.551 0.308 —0.093 —0.461 —0.459

—0.434 1.105 —0.078 0.235 —0.178 —0.147 —0.176 —0.45 0.177 —0.729
0.020 —0.078 0.433 —0.124 —0.189 —0.586 —0.020 —0.611 —0.209 —0.127
—0.197 0.235 —0.124 8.076 1.009 —1.879 4.558 —0.011 0.197 0.54
—0.031 —0.178 —0.189 1.009 2.901 0.027 —1.113 —0.529 —0.176 0.125
—0.551 —0.147 —0.586 —1.879 0.027 5.163 0.107 2.484 0.394 —0.142
0.308 —0.176 —0.020 4.558 —1.113 0.107 7.27 0.826 —0.26 -0.28
—0.093 —0.45 —0.611 —0.011 —0.529 2.484 0.826 5.6 0.009 1.226
—0.461 0.177 —0.209 0.197 —0.176 0.394 —0.26 0.009 0.808 0.193
—0.459 —0.729 —0.127 0.54 0.125 —0.142 —0.23 1.226 0.193 3.848

Our experiment is performed in MATLAB Version 6.5. Some fixed parameter
values are given as follows

w = (0.1,0.1,0.1,0.1,0.1,0.1,0.099,0.1,0.1,0.1)7, s* = k= = 0.001.

Ay =05 A=056=025 c =05, co=15 p=0.25 G =0.5.

The stopping condition is ||dg| < 107%. We compare our algorithm with tra-
ditional trust region (TTR) method and the Algorithm in [13]. The numerical
results are listed in Table 1.

Table 1. Comparisons of three trust region methods.
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item TTR Algorithm in [13] Algorithm 1
iterations 35 31 28
function evaluations 36 34 32
line searches 0 2 3

The numerical results show that line search is helpful to reduce iterations and
nction evaluations for the given problem.

5. Conclusions

This paper presented an algorithm for convex nonlinear optimization prob-

lems that combines line search and accurate trust region step. The Armijo line
search is used in the algorithm when a trial step is not accepted, this scheme
guarantees that the subproblem is only need to be solved one time at each iter-

at

ion. The global convergence property has been established for the algorithm.

We apply the algorithm to solve nonlinear portfolio optimization problems. Pri-
mary numerical results show that the algorithm is encouraging.
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