• Title/Summary/Keyword: Fe-pnictides

Search Result 6, Processing Time 0.019 seconds

Electronic Structure of Superconducting NaFeAs (초전도 NaFeAs의 전자 구조)

  • Lee, K.W.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.123-127
    • /
    • 2009
  • NaFeAs recently observed superconductivity with the maximum $T_c{\approx}25$ K is investigated using first principles approach. We will address briefly the electronic structure and contrast other superconducting pnictides. This system shows strong two-dimensionality and reduction of flatness in the Fermi surfaces undermines tendencies of magnetic or charge instabilities. As observed in other superconducting pnictides, $Q_M=(\pi,\pi,0)$ antiferromagnetic ordering, which has not been observed clearly yet in this compound, is energetically favored. However, contrast to other superconducting pnictides, the density of states in this ordering shows considerable electron-hole asymmetry, implying efficiency of hole-doping than electron-doping to enhance $T_c$.

  • PDF

Correlation Effects in Superconducting $Sr_2VO_3FeAs$ (초전도 $Sr_2VO_3FeAs$에서 상관효과)

  • Lee, K.W.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.46-50
    • /
    • 2010
  • In the superconducting $Sr_2VO_3FeAs$, containing bimetallic layers, with maximum $T_c{\approx}\;46\;K$ correlation effects on V ions have been investigated using LDA+U method. Within the local density approximation (LDA) this system has the one-third filled $t_{2g}$ manifold of V, decomposed into $d_{xy}$ of bandwidth W=2 eV and nearly degenerate $d_{zx}d_{yz}$ of W=1 eV. Consideration of correlation effects leads to a metal-insulator transition on V ions $t^{2\uparrow}_{2g}\;{\rightarrow}\;d^{1\uparrow}_{xz}\;d^{1\uparrow}_{yz}$ at the critical on-site Coulomb repulsion $U_c$= 3.5 eV. At U=4 eV, the electronic structure, in which V ions are insulating, leads to several van Hove singularities near $E_F$ and similar Fermiology with other pnictides. Applying U to V ions results in increasing Fe moment as well as V moment, indicating somewhat hybridization between Fe and V ions even though this system is strongly 2-dimesional. Our results show possible importance of correlation effects on this system.

Correlation Effect on the Electronic Structures of {Li, Na}FeAs ({Li, Na}FeAs 물질의 강상관계 전자 구조)

  • Ji, Hyo-Seok;Lee, Geun-Sik;Shim, Ji-Hoon
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2012
  • Based on fully self-consistent dynamical mean field theory (DMFT) method, we investigate electronic structure and Fermi surface nesting property of LiFeAs and NaFeAs, focusing on the correlation effect of iron 3d orbital. For LiFeAs, good nesting property by density functional theory (DFT) method is much suppressed by DFT+DMFT method due to the orbital-dependent renormalization magnitude. NaFeAs shows a similar behavior, but a better nesting is obtained than LiFeAs from DFT+DMFT Fermi surfaces. Our result is consistent with the observed superconducting (spin density wave) ground state of LiFeAs (NaFeAs).

Effect of chemical doping on heterostructured Fe-based superconductor Sr2VO3FeAs

  • Ok, Jong Mok;Na, Se Woong;Kim, Jun Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.28-31
    • /
    • 2018
  • Phase diagrams of electron- and hole-doped $Sr_2VO_3FeAs$ are investigated using Co and Mn substitution at Fe site. Metallic nature survives only for Co (electron) doping, not for Mn (hole) doping. The conductivity of $Sr_2VO_3(Fe,M)As$ (M=Mn,Co) is sensitive to the structural modification of FeAs microstructure rather than carrier doping. This finding implies that the FeAs layer plays a dominant role on the charge conduction, thus the $SrVO_3$ layers should be considered as an insulating block. Also, we found that the superconductivity is rapidly suppressed by both dopants. This result is different from the conventional behavior that superconductivity is induced by doping in the most of Fe pnictides. Our finding strongly supports the uniqueness of $Sr_2VO_3FeAs$ among the Fe pnictide superconductors.

Anisotropic superconductivity of high quality FeSe1-x Single crystal

  • Kwon, Chang Il;Ok, Jong Mok;Kim, Jun Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.26-30
    • /
    • 2014
  • We investigate the upper critical field anisotropy ${\Gamma}_H$ and the magnetic penetration depth anisotropy ${\Gamma}_{\lambda}$ of a high-quality $FeSe_{1-x}$ single crystal using angular dependent resistivity and torque magnetometry up to 14 T. High quality single crystals of $FeSe_{1-x}$ were successfully grown using $KCl-AlCl_3$ flux method, which shows a sharp superconducting transition at $T_C{\sim}9K$ and a high residual resistivity ratio of ~ 25. We found that the anisotropy ${\Gamma}_H$ near $T_C$ is a factor of two larger than found in the poor-quality crystals, indicating anisotropic 3D superconductivity of $FeSe_{1-x}$. Similar to the 1111-type Fe pnictides, the anisotropies ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ show distinct temperature dependence; ${\Gamma}_H$ decreases but ${\Gamma}_{\lambda}$ increases with lowering temperature. These behaviors can be attributed to multi-band superconductivity, but different from the case of $MgB_2$. Our findings suggest that the opposite temperature dependence of ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ is the common properties of Fe-based superconductors.