Correlation Effect on the Electronic Structures of {Li, Na}FeAs

{Li, Na}FeAs 물질의 강상관계 전자 구조

  • Ji, Hyo-Seok (Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Geun-Sik (Department of Chemistry, Pohang University of Science and Technology) ;
  • Shim, Ji-Hoon (Department of Chemistry, Pohang University of Science and Technology)
  • Received : 2012.07.16
  • Accepted : 2012.08.03
  • Published : 2012.08.31

Abstract

Based on fully self-consistent dynamical mean field theory (DMFT) method, we investigate electronic structure and Fermi surface nesting property of LiFeAs and NaFeAs, focusing on the correlation effect of iron 3d orbital. For LiFeAs, good nesting property by density functional theory (DFT) method is much suppressed by DFT+DMFT method due to the orbital-dependent renormalization magnitude. NaFeAs shows a similar behavior, but a better nesting is obtained than LiFeAs from DFT+DMFT Fermi surfaces. Our result is consistent with the observed superconducting (spin density wave) ground state of LiFeAs (NaFeAs).

본 연구에서는 자체일관적인 DFT+DMFT 계산을 통해 철의 3d 전자의 상관관계가 LiFeAs와 NaFeAs의 전자구조와 페르미 면 겹싸기 등에 미치는 영향을 알아보았다. 이들은 모두 철계 초전도체의 초전도성 형성에 매우 중요한 역할을 가지고 있다. DFT+DMFT 계산에서 얻어진 LiFeAs의 스펙트럼은, DFT에서 얻어진 띠 구조에 비해 매우 약한 페르미 면 겹싸기 현상을 보이며, NaFeAs 의 경우 DMFT 에서도 페르미 면 겹싸기 현상이 어느 정도 남아있는 것을 확인하였다. 그리고 이는 실험에서 보고된 ARPES 결과와 일치함을 확인했다.

Keywords

References

  1. S. V. Borisenko et al., Phys. Rev. Lett. 105, 067002 (2010).
  2. I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008).
  3. N. Qureshi et al., Phys. Rev. Lett. 108, 117001 (2012).
  4. A. E. Taylor et al., Phys. Rev. B 83, 220514 (2011).
  5. C. Putzke et al., Phys. Rev. Lett. 108, 047002 (2012).
  6. P. M. R. Brydon et al., Phys. Rev. B 83, 060501 (2011).
  7. L. Craco et al., Phys. Rev. B 78, 134511 (2008).
  8. Z. P. Yin et al., Nature Phys. 7, 294 (2011).
  9. H. Lee et al., Phys. Rev. B 81, 220506 (2010).
  10. P. Hansmann et al., Phys. Rev. Lett. 104, 197002 (2010).
  11. H. S. Ji, G. Lee, J. H. Shim, Phys. Rev. B 84, 054542 (2011).
  12. Z. P. Yin et al., Nature Mater. 10, 932 (2011).
  13. P. Goswami et al., Phys. Rev. B 84, 155108 (2011).
  14. R. Applegate et al., Phys. Rev. B 81, 024505 (2010).
  15. A. L. Wysocki et al., Nature Phys. 7, 485 (2011).
  16. J. H. Tapp et al., Phys. Rev. B 78, 060505(R) (2008).
  17. G. F. Chen, W. Z. Hu, J. L. Lua, N. L. Wang, Phys. Rev. Lett. 102, 227004 (2009).
  18. G. Lee et al., arxiv:1205.6526
  19. R. A. Jishi, H.M. Alyahyaei, Adv. Cond. Mat. Phys. 2010, 804343 (2010).
  20. G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
  21. K. Haule, C.-H. Yee, K. Kim, Phys. Rev. B. 81, 195107 (2010).
  22. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, ISBN 3-9501031-1-2 (2001).
  23. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
  24. P. Werner, C. Comanac, L. DeMedici, M. Troyer, A. J. Millis, Phys. Rev. Lett. 97, 076405 (2006).
  25. K. Haule, Phys. Rev. B 75, 155113 (2007).
  26. A. Kutepov et al., Phys. Rev. B 82, 045105 (2010).
  27. S. Li et al., Phys. Rev. B 80, 020504(R) (2009).
  28. Z. P. Yin, K Haule, G. Kotliar, Nat. Mater. 10, 932 (2011).
  29. K. Hashimoto et al., Phys. Rev. Lett. 108, 047003 (2012).