• 제목/요약/키워드: Fe-based superconductor

검색결과 18건 처리시간 0.026초

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J.;Kim, D.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권1호
    • /
    • pp.33-36
    • /
    • 2016
  • Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Effect of chemical doping on heterostructured Fe-based superconductor Sr2VO3FeAs

  • Ok, Jong Mok;Na, Se Woong;Kim, Jun Sung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.28-31
    • /
    • 2018
  • Phase diagrams of electron- and hole-doped $Sr_2VO_3FeAs$ are investigated using Co and Mn substitution at Fe site. Metallic nature survives only for Co (electron) doping, not for Mn (hole) doping. The conductivity of $Sr_2VO_3(Fe,M)As$ (M=Mn,Co) is sensitive to the structural modification of FeAs microstructure rather than carrier doping. This finding implies that the FeAs layer plays a dominant role on the charge conduction, thus the $SrVO_3$ layers should be considered as an insulating block. Also, we found that the superconductivity is rapidly suppressed by both dopants. This result is different from the conventional behavior that superconductivity is induced by doping in the most of Fe pnictides. Our finding strongly supports the uniqueness of $Sr_2VO_3FeAs$ among the Fe pnictide superconductors.

Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers

  • Hwang, T.J.;Kim, D.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.5-7
    • /
    • 2016
  • We present an experimental investigation of the superconducting transition temperatures, $T_c$, of superconductor/ferromagnet bilayers with varying the thickness of ferromagnetic layer. FeN was used for the ferromagnetic (F) layer, and NbN and Nb were used for the superconducting (S) layer. The results were obtained using three different-thickness series of the S layer of the S/F bilayers: NbN/FeN with NbN thickness, $d_{NbN}{\approx}9.3nm$ and $d_{NbN}{\approx}10nm$, and Nb/FeN with Nb thickness $d_{Nb}{\approx}15nm$. $T_c$ drops sharply with increasing thickness of the ferromagnetic layer, $d_{FeN}$, before maximal suppression of superconductivity at $d_{FeN}{\approx}6.3nm$ for $d_{NbN}{\approx}10nm$ and at $d_{FeN}{\approx}2.5nm$ for $d_{Nb}{\approx}15nm$, respectively. After shallow minimum of $T_c$, a weak $T_c$ oscillation was observed in NbN/FeN bilayers, but it was hardly observable in Nb/FeN bilayers.

$SmFeAsO_{0.85}$ 단결정의 c-축 전도 특성 (c-axis Transport Properties of $SmFeAsO_{0.85}$ Single Crystals)

  • 박재현;도용주;이현숙;조병기;이후종
    • Progress in Superconductivity
    • /
    • 제11권2호
    • /
    • pp.118-122
    • /
    • 2010
  • Electrical transport properties were measured on $SmFeAsO_{0.85}$ single crystals along the c-axis for various temperatures and magnetic fields. For the measurements a mesa structure was fabricated on the surface of the single crystals. Samples showed a metallic temperature dependence of resistance and current-voltage curves without hysteretic multiple branch splitting that is usually observed in tunneling Josephson junctions. In addition, in ab-planar magnetic fields, samples did not show the Fraunhofer-type field modulation of the critical current. All these features indicate that the c-axis transport characteristics of $SmFeAsO_{0.85}$ single crystals are explained by the anisotropic bulk superconductivity rather than Josephson tunneling.

Ultrafast probes of coherent oscillations in Fe-based superconductors

  • Kim, K.W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권1호
    • /
    • pp.1-4
    • /
    • 2017
  • Forefront ultrafast experimental techniques have recently proven their potential as new approaches to understand materials based on non-equilibrium dynamics in the time domain. The time domain approach is useful especially in disentangling complicated coupling among charge, spin and lattice degrees of freedom. Various ultrafast experiments on Fe-based superconductors have observed strong coherent oscillations of an $A_{1g}$ phonon mode of arsenic ions, which shows strong coupling to the electronic and magnetic states. This paper reviews the recent reports of ultrafast studies on Fe-based superconductor with a focus on the coherent oscillations. Experimental results with ultrashort light sources from the terahertz-infrared pulses to the hard X-rays from a free electron laser will be presented.

Exotic superconducting state under high magnetic fields: Insights from iron-based superconductor

  • Min Jae Kim;Jong Mok Ok
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권2호
    • /
    • pp.1-4
    • /
    • 2023
  • Over the past decade, the exploration of high-temperature superconductivity and the discovery of a wide range of exotic superconducting states in Fe-based materials have propelled condensed matter physics research to new frontiers. These materials exhibit intriguing phenomena arising from their multiband electronic structure, strongly orbital-dependent effects, extremely small Fermi energy, electronic nematicity, and topological aspects. Among the various factors influencing their superconducting properties, high magnetic fields play a crucial role as a control knob capable of disrupting the subtle balance between the spin, charge, lattice, and orbital degrees of freedom, leading to the emergence of various exotic superconducting states. In this review, we provide an overview of the current understanding of the exotic superconducting states observed in Fe-based superconductors, with a particular focus on FeSe and Sr2VO3FeAs, under the influence of high magnetic fields.

Brief Review on Iron-based Superconductors: are There Clues for Unconventional Superconductivity?

  • Oh, Hyung-Ju;Moon, Ji-Soo;Shin, Dong-Han;Moon, Chang-Youn;Choi, Hyoung-Joon
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.65-84
    • /
    • 2011
  • Study of superconductivity in layered iron-based materials was initiated in 2006 by Hosono's group, and boosted in 2008 by the superconducting transition temperature, $T_c$, of 26 K in $LaFeAsO_{1-X}F_X$. Since then, enormous researches have been done on the materials, with $T_c$ reaching as high as 55 K. Here, we review briefly experimental and theoretical results on atomic and electronic structures and magnetic and superconducting properties of FeAs-based superconductors and related compounds. We seek for clues for unconventional superconductivity in the materials.

Relationship Between the Structure and the Superconductivity in LaFeAsO

  • Jung, Dongwoon;Cho, Sungwoo;Lee, In-Ja
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.912-916
    • /
    • 2013
  • The electronic structure of LaFeAsO was analyzed by tight-binding band calculation based upon the normal and shrunk lattices. A strong Fermi surface nesting was found in the normal LaFeAsO, while most of the nesting area was disappeared in the shrunk LaFeAsO. It was found, therefore, high pressure atmosphere is required to become a superconductor for LaFeAsO by suppressing the SDW (spin density wave) state through the disappearance of the Fermi surface nesting.

Anisotropic superconductivity of high quality FeSe1-x Single crystal

  • Kwon, Chang Il;Ok, Jong Mok;Kim, Jun Sung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.26-30
    • /
    • 2014
  • We investigate the upper critical field anisotropy ${\Gamma}_H$ and the magnetic penetration depth anisotropy ${\Gamma}_{\lambda}$ of a high-quality $FeSe_{1-x}$ single crystal using angular dependent resistivity and torque magnetometry up to 14 T. High quality single crystals of $FeSe_{1-x}$ were successfully grown using $KCl-AlCl_3$ flux method, which shows a sharp superconducting transition at $T_C{\sim}9K$ and a high residual resistivity ratio of ~ 25. We found that the anisotropy ${\Gamma}_H$ near $T_C$ is a factor of two larger than found in the poor-quality crystals, indicating anisotropic 3D superconductivity of $FeSe_{1-x}$. Similar to the 1111-type Fe pnictides, the anisotropies ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ show distinct temperature dependence; ${\Gamma}_H$ decreases but ${\Gamma}_{\lambda}$ increases with lowering temperature. These behaviors can be attributed to multi-band superconductivity, but different from the case of $MgB_2$. Our findings suggest that the opposite temperature dependence of ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ is the common properties of Fe-based superconductors.

{Ca,Sr,Ba}$Fe_2As_2$의 전자 및 자성 구조: 동력학적 평균장 이론 접근 (Electronic and Magnetic Structures of {Ca,Sr,Ba}$Fe_2As_2$ : Dynamical Mean Field Theory Approach)

  • 이근식;심지훈
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.85-89
    • /
    • 2011
  • 제일원리 DFT+DMFT방법을 사용하여 철계열 고온초전도체 122 화합물 $AFe_2As_2$ (A=Ca, Sr, Ba) 에 대한 전자 및 자성 구조를 계산하였다. 계산된 전자구조는 실험에서 보고된 ARPES 결과와 어느 정도 일치함을 확인했다. 또한 계산을 통해 얻은 반자성 전이온도는 실험과 동일한 경향을 보여준다.