DOI QR코드

DOI QR Code

Suppression of superconductivity in superconductor/ferromagnet multilayers

  • Hwang, T.J. (Yeungnam University) ;
  • Kim, D.H. (Yeungnam University)
  • Received : 2016.03.18
  • Accepted : 2016.03.22
  • Published : 2016.03.31

Abstract

Suppression of the superconducting transition temperature ($T_c$) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. $T_c$ suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of $T_c$ suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.

Keywords

References

  1. J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, and S. D. Bader, "Magnetization-orientation dependence of the superconducting transition temperature in the ferromagnet-superconductor-ferromagnet system: CuNi/Nb/CuNi," Phys. Rev. Lett., vol. 89, pp. 267001-4, 2002. https://doi.org/10.1103/PhysRevLett.89.267001
  2. A. Potenza and C. H. Marrows, "Superconductor-ferromagnet CuNi/Nb/CuNi trilayers as superconducting spin-valve core structures," Phys. Rev. B, vol. 71, pp. 180503(R), 2005. https://doi.org/10.1103/PhysRevB.71.180503
  3. Ion C. Moraru, W. P. Pratt, Jr., and Norman O. Birge, "Magnetization-dependent Tc shift in ferromagnet/superconductor/ferromagnet trilayers with a strong ferromagnet," Phys. Rev. Lett., vol. 96, pp. 037004, 2006. https://doi.org/10.1103/PhysRevLett.96.037004
  4. D. H. Kim and T. J. Hwang, "Domain stability effect on magnetoresistnace in ferromagnet/superconductor/ferromagnet trilayers," Physica C, vol. 455, pp. 58-62, 2007. https://doi.org/10.1016/j.physc.2007.02.007
  5. T. J. Hwang, S. Oh, and D. H. Kim, "Dependence of magnetoresistance and superconducting transition temperature on relative orientation of magnetization easy axis to current direction in a Py/Nb/Py trilayer," IEEE Trans. Magn., vol. 45, pp. 4899-4902, 2009. https://doi.org/10.1109/TMAG.2009.2023240
  6. J. Zhu, X. Cheng, C. Boone, and I. N. Krivorotov, "Origin of the inverse spin switch effect in superconducting spin valves," Phys. Rev. Lett., vol. 103, pp. 027004, 2009. https://doi.org/10.1103/PhysRevLett.103.027004
  7. A. Yu. Rusanov, S. Habraken, and J. Aarts, "Inverse spin switch effects in ferromagnet-superconductor-ferromagnet trilayers with strong ferromagnets," Phys. Rev. B, vol. 73, pp. 060505(R), 2006. https://doi.org/10.1103/PhysRevB.73.060505
  8. D. Stamopoulos and E. Aristomenopoupou, "Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers," Scientific Reports, vol. 5, pp. 13420, 2015. https://doi.org/10.1038/srep13420
  9. V. I. Zdravkov, J. Kehrle, G. Obermeier, S. Gsell, M. Schreck, C. Muller, H.-A. Krug von Nidda, J. Lindner, J. Moosburger-Will, E. Nold, R. Morari, V. V. Ryazanov, A. S. Sidorenko, S. Horn, R. Tidecks, and L. R. Tagirov, "Reentrant superconductivity in superconductor/ferromagnetic-alloy bilayers," Phys. Rev. B, vol. 82, pp. 054517, 2010. https://doi.org/10.1103/PhysRevB.82.054517
  10. L. Lazar, K. Westerholt, H. Zabel, L. R. Tagirov, Yu. V. Goryunov, N. N. Garifyanov, and I. A. Garifullin, "Superconductor/ferromagnet proximity effect in Fe/Pb/Fe trilayers," Phys. Rev. B, vol. 61, pp. 3711-3722, 2000. https://doi.org/10.1103/PhysRevB.61.3711
  11. Z. Radovic, M. Ledvij, L. Dobrosavljevic-Grujic, A. I. Buzdin, and J. R. Clem, "Transition temperatures of superconductor-ferromagnet superlattices," Phys. Rev. B, Vol. 44, pp. 759-764, 1991. https://doi.org/10.1103/PhysRevB.44.759
  12. L. R. Tagirov, "Proximity effect and superconducting transition temperature in superconductor/ferromagnet sandwiches," Physica C, vol. 307, pp. 145-163, 1998. https://doi.org/10.1016/S0921-4534(98)00389-X
  13. T. J. Hwang and D. H. Kim, "Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature," Prog. Supercondt. Cryogenics, vol. 17, pp. 9-12, 2015. https://doi.org/10.9714/psac.2015.17.3.009
  14. T. J. Hwang, J. Lee, K. H. Kim, and D. H. Kim, "High-frequency behavior of FeN thin films fabricated by reactive sputtering," J. Kor. Phys. Soc. (unpublished).

Cited by

  1. Superconducting critical temperature in FeN-based superconductor/ferromagnet bilayers vol.18, pp.2, 2016, https://doi.org/10.9714/psac.2016.18.2.005