• Title/Summary/Keyword: Fe-W mineralization

Search Result 28, Processing Time 0.018 seconds

Recently Improved Exploration Method for Mineral Discovery (해외광물자원개발을 위한 최적 탐사기법과 동향)

  • Choi, Seon-Gyu;Ahn, Yong-Hwan;Kim, Chang-Seong;Seo, Ji-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.57-65
    • /
    • 2009
  • Selection of good mineralized area is a combination of the integration of all the available geo-scientific (i.e., geological, geochemical, and geophysical) information, extrapolation of likely features from known mineralized terrenes and the ability to be predictive. The time-space relationships of the hydrothermal deposits in the East Asia are closely related to the changing plate motions. Also, two distinctive hydrothermal systems during Mesozoic occurred in Korea: the Jurassic/Early Cretaceous deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary shallow geothermal ones during the Bulguksa event. Both the Mesozoic geothermal system and the mineralization document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The Jurassic mineral deposits were formed at the relatively high temperature and deep-crustal level from the mineralizing fluids characterized by the relatively homogeneous and similar ranges of ${\delta}^{18}O$ values, suggesting that ore-forming fluids were principally derived from spatially associated Jurassic granitoid and related pegmatite. Most of the Jurassic auriferous deposits (ca. 165-145 Ma) show fluid characteristics typical of an orogenic-type gold deposits, and were probably generated in a compressional to transpressional regime caused by an orthogonal to oblique convergence of the Izanagi Plate into the East Asian continental margin. On the other hand, Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of sub-volcanic activity and the distal to transitional condition derived from volcanic environments. However, Cu (-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas polymetallic or precious-metal deposits are more distal to transitional. Strike-slip faults and caldera-related fractures together with sub-volcanic activity are associated with major faults reactivated by a northward (oblique) to northwestward (orthogonal) convergence, and have played an important role in the formation of the Cretaceous Au-Ag lode deposits (ca. 110-45 Ma) under a continental arc setting. The temporal and spatial distinctions between the two typical Mesozoic deposit styles in Korea reflect a different thermal episodes (i.e., late orogenic and post-orogenic) and ore-forming fluids related to different depths of emplacement of magma (i.e., plutonic and sub-volcanic) due to regional changes in tectonic settings.

  • PDF

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF

The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications (남한의 중생대 광화유체의 기원과 진화특성: 광상 성인과의 관계)

  • Choi, Seon-Gyu;Pak, Sang-Joon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.517-535
    • /
    • 2007
  • Two distinctive Mesozoic hydrothermal systems occurred in South Korea: the Jurassic/Early Cretaceous(ca. $200{\sim}130$ Ma) deep-level ones during the Daebo orogeny and the Late Cretaceous/Tertiary(ca. $110{\sim}45$ Ma) shallow hydrothermal ones during the Bulgugsa event. The Mesozoic hydrothermal system and the metallic mineralization in the Korean Peninsula document a close spatial and temporal relationship with syn- to post-tectonic magmatism. The calculated ${\delta}^{18}O_{H2O}$ values of the ore-forming fluids from the Mesozoic metallic mineral deposits show limited range for the Jurassic ones but variable range for the Late Cretaceous ones. The orogenic mineral deposits were formed at relatively high temperatures and deep-crustal levels. The mineralizing fluids that were responsible for the formation of theses deposits are characterized by the reasonably homogeneous and similar ranges of ${\delta}^{18}O_{H2O}$ values. This implies that the ore-forming fluids were principally derived from spatially associated Jurassic granitoids and related pegmatite. On the contrary, the Late Cretaceous ferroalloy, base-metal and precious-metal deposits in the Taebaeksan, Okcheon and Gyeongsang basins occurred as vein, replacement, breccia-pipe, porphyry-style and skarn deposits. Diverse mineralization styles represent a spatial and temporal distinction between the proximal environment of subvolcanic activity and the distal to transitional condition derived from volcanic environments. The Cu(-Au) or Fe-Mo-W deposits are proximal to a magmatic source, whereas the polymetallic or the precious-metal deposits are more distal to transitional. On the basis of the overall ${\delta}^{18}O_{H2O}$ values of various ore deposits in these areas, it can be briefed that the ore fluids show very extensive oxygen isotope exchange with country rocks, though the ${\delta}D_{H2O}$ values are relatively homogeneous and similarly restricted.

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea (대봉 금-은광상의 모암변질과 원소분산 특성 연구)

  • Yoo, Bong-Chul;Chi, Se-Jung;Lee, Gil-Jae;Lee, Jong-Kil;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.713-726
    • /
    • 2007
  • The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.

Characteristics of Fe-Mn Mineralization in Ugii Nuur and Tamir Gol, Mongolia (몽골 우기누르와 타미르골의 철-망간 부존 특성)

  • Lee, Bum Han;Park, Gye Soon;Kim, In Joon;Lee, Gilljae;Heo, Chul-Ho;Koh, Sang-Mo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.313-322
    • /
    • 2012
  • 몽골 우기누르 지역 철-망간 광상과 타미르골 지역 철 광상의 광체는 먼곤체지 층 내에 렌즈상으로 협재되는 특성을 갖는다. 이러한 광상은 캠브리아 기에서 실루리아기에 이르는 화산 기원의 퇴적형 광상인 타미르골-요루골 광상구에 해당된다. 우기누르 지역의 철-망간 광체와 타미르골 지역의 철광체는 주로 규암과 편암을 모암으로 하여 먼곤체지 층 내에 렌즈상으로 협재되어 있다. 우기누르지역의 편암이 주로 세리사이트 편암인 데 비해 타미르골 지역은 주로 백운모 편암이 나타나는 차이를 갖는다. 또한 우기누르 지역의 광석은 망간이10에서 12% 함유되나 타미르골 지역의 광석은 망간이 1% 이하로 함량이 낮은 특성을 갖는다. 우기누르 철 망간 광상의 철 광물은 주로 자철석, 적철석이 우세하게 나타나고 기타 철 산화물과 황철석이 미량으로 수반되어 나타나며, 망간 광물은 주로스페사틴, 버네사이트가 우세하게 나타나고 기타망간 산화물이 수반되어 나타난다. 타미르골 지역의 철 광석은 자철석이 우세하게 나타나고 적철석이 수반되며 황철석, 철 산화물, 탄산질 철 등이 미량으로 수반되어 나타난다. 우기누르 철-망간 광상에 대한 육상 자력탐사 결과 높은 자기 이상값을보이는 영역이 지표에서 확인된 광체의 방향과 같은 약 $N30^{\circ}W$ 방향으로 나타나며 지표에서 확인된 광체 이외에 지표에 드러나지 않은 부분에서도 연장되는 것이 확인되었다.

Geologic, Fluid Inclusion, and Sulfur Isotopic Studies of Hydrothermal Deposit in the Tanggueng District, West Java, Indonesia (인도네시아 서부자바 땅긍(Tanggueng)지역 열수광상의 지질, 유체포유물 및 황동위원소 연구)

  • Jae-Ho Lee;In-Joon Kim
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.321-328
    • /
    • 2003
  • The epithermal gold and base metal deposit of the Tanggeung district of West Java consists of four major veins(Celak, Cigodobras, Cilangkap and Pasirbedil) with NS to N10$^{\circ}$∼20$^{\circ}$E and N75$^{\circ}$W strikes. The veins occur within fractures cutting the crystal and lithic tuff of Jampang Formation(Oligo-Miocene) in and around the Mt. Subang of the western Java, Indonesia. The ore mineralization is characterized by the occurrence of pyrite, sphalerite, galena, chalcopyrite, and small amounts of bornite and Fe-oxides. Hydrothermal alteration, associated with the mineralization, was dominantly silicified and enveloped by the phyllitic(sericitic), argillic and propylitic alteration containing the disseminated pyrite. Gangue minerals consist of interstratified smectite-illite, chlorite, sericite, and minor kaolinite. The presence of vapor-rich fluid inclusions in quartz veins suggests that boiling occurred locally throughout ore deposition. Fluid inclusion studies suggest that the ore fluid evolved from initial high temperatures(〓34$0^{\circ}C$) to later lower temperatures(〓19$0^{\circ}C$). Salinities range from 0.0 to 8.3 wt percent NaCl equiv. The relatively high increase in salinity(up to 8.3 wt percent NaCl equiv) might be explained by a local boiling and by a participation of magmatic fluids, supported by the sulfur isotope results. Evidence of fluid boiling suggests that the pressure decreased from 200 bars to 120 bars. This corresponds to the depths of approximately 750 to 1,200 m in a hydrothermal system that changed from lithostatic to hydrostatic conditions. Using homogenization temperatures and paragenetic constraints, the calculated $\delta$$^{34}$ S values of $H_2S$ in ore fluid are -0.2 to 1.8 permil close to the 0 permil isotopic value of magmatic sulfur.

Applicability of plate tectonics to the post-late Cretaceous igneous activities and mineralization in the southern part of South Korea( I ) (한국남부(韓國南部)의 백악기말(白堊紀末) 이후(以後)의 화성활동(火成活動)과 광화작용(鑛化作用)에 대(對)한 판구조론(板構造論)의 적용성(適用性) 연구(硏究)( I ))

  • Min, Kyung Duck;Kim, Ok Joon;Yun, Suckew;Lee, Dai Sung;Joo, Sung Whan
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.123-154
    • /
    • 1982
  • Petrochemical, K-Ar dating, Sand Rb/Sr isotopes, metallogenic zoning, paleomagnetic and geotectonic studies of the Gyongsang basin were carried out to examine applicability of plate tectonics to the post-late Cretaceous igneous activity and metallogeny in the southeastern part of Korean Peninsula. The results obtained are as follows: 1. Bulgugsa granitic rocks range from granite to adamellite, whose Q-Ab-Or triangular diagram indicates that the depth and pressure at which the magma consolidated increase from coast to inland varying from 6 km, 0.5-3.3 kb in the coastal area to 17 km, 0.5-10 kb in the inland area. 2. The volcanic rocks in Gyongsang basin range from andesitic to basaltic rocks, and the basaltic rocks are generally tholeiitic in the coastal area and alkali basalt in the inland area. 3. The volcanic rocks of the area have the initial ratio of Sr^{87}/Sr^{86} varying from 0.706 to 0.707 which suggests a continental origin; the ratio of Rb/Sr changing from 0.079-0.157 in the coastal area to 0.021-0.034 in the inland area suggests that the volcanism is getting younger toward coastal side, which may indicate a retreat in stage of differentiation if they were derived from a same magma. The K_2O/SiO_2 (60%) increases from about 1.0 in the coastal area to about 3.0 in the inland area, which may suggest an increase indepth of the Benioff zone, if existed, toward inland side. 4. The K-Ar ages of volcanic rocks were measured to be 79.4 m.y. near Daegu, and 61.7 m.y. near Busan indicating a southeastward decrease in age. The ages of plutonic rocks also decrease toward the same direction with 73 m.y. near Daegu, and 58 m.y. near Busan, so that the volcanism predated the plutonism by 6 m.y. in the continental interior and 4 m.y. along the coast. Such igneous activities provide a positive evidence for an applicability of plate tectonics to this area. 5. Sulfur isotope analyses of sulfide minerals from 8 mines revealed that these deposits were genetically connected with the spacially associated ingeous rocks showing relatively narrow range of ${\delta}^{34}S$ values (-0.9‰ to +7.5‰ except for +13.3 from Mulgum Mine). A sequence of metallogenic zones from the coast to the inland is delineated to be in the order of Fe-Cu zone, Cu-Pb-Zn zone, and W-Mo zone. A few porphyry type copper deposits are found in the Fe-Cu zone. These two facts enable the sequence to be comparable with that of Andean type in South America. 6. The VGP's of Cretaceous and post Cretaceous rocks from Korea are located near the ones($71^{\circ}N$, $180^{\circ}E$ and $90^{\circ}N$, $110^{\circ}E$) obtained from continents of northern hemisphere. This suggests that the Korean peninsula has been stable tectonically since Cretaceous, belonging to the Eurasian continent. 7. Different polar wandering path between Korean peninsula and Japanese islands delineates that there has been some relative movement between them. 8. The variational feature of declination of NRM toward northwestern inland side from southeastern extremity of Korean peninsula suggests that the age of rocks becomes older toward inland side. 9. The geological structure(mainly faults) and trends of lineaments interpreted from the Landsat imagery reveal that NNE-, NWW- and NEE-trends are predominant in the decreasing order of intensity. 10. The NNE-trending structures were originated by tensional and/or compressional forces, the directions of which were parallel and perpendicular respectively to the subduction boundary of the Kula plate during about 90 m.y. B.P. The NWW-trending structures were originated as shear fractures by the same compressional forces. The NEE-trending structures are considered to be priginated as tension fractures parallel to the subduction boundary of the Kula plate during about 70 m.y. B.P. when Japanese islands had drifted toward southeast leaving the Sea of Japan behind. It was clearly demonstrated by many authors that the drifting of Japanese islands was accompanied with a rotational movement of a clock-wise direction, so that it is inferred that subduction boundary had changed from NNE- to NEE-direction. A number of facts and features mentioned above provide a suite of positive evidences enabling application of plate tectonics to the late Cretaceous-early Tertiary igneous activity and metallogeny in the area. Synthesizing these facts, an arc-trench system of continental margin-type is adopted by reconstructing paleogeographic models for the evolution of Korean peninsula and Japan islands. The models involve an extention mechanism behind the are(proto-Japan), by which proto-Japan as of northeastern continuation of Gyongsang zone has been drifted rotationally toward southeast. The zone of igneous activity has also been migrated from the inland in late-Cretaceous to the peninsula margin and southwestern Japan in Tertiary.

  • PDF