Element Dispersion and Wall-rock Alteration from Daebong Gold-silver Deposit, Republic of Korea

대봉 금-은광상의 모암변질과 원소분산 특성 연구

  • Yoo, Bong-Chul (Department of geology and environmental sciences, Chungnam National University) ;
  • Chi, Se-Jung (Mineral Resources Group, Geology & Geoinformation Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Gil-Jae (Department of geology and environmental sciences, Chungnam National University) ;
  • Lee, Jong-Kil (Department of geology and environmental sciences, Chungnam National University) ;
  • Lee, Hyun-Koo (Department of geology and environmental sciences, Chungnam National University)
  • 유봉철 (충남대학교 자연과학대학 지질환경과학과) ;
  • 지세정 (한국지질자원연구원 지질기반정보연구부 광물자원연구실) ;
  • 이길재 (충남대학교 자연과학대학 지질환경과학과) ;
  • 이종길 (충남대학교 자연과학대학 지질환경과학과) ;
  • 이현구 (충남대학교 자연과학대학 지질환경과학과)
  • Published : 2007.12.28

Abstract

The Daebong deposit consists of gold-silver-bearing mesothermal massive quartz veins which fill fractures along fault zones($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$) within banded gneiss or granitic gneiss of Precambrian Gyeonggi massif. Ore mineralization of the deposit is composed of massive white quartz vein(stage I) which was formed in the same stage by multiple episodes of fracturing and healing and transparent quartz vein(stage II) which is separated by a major faulting event. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and includes mainly sericite, quartz, and minor illite, carbonates and epidote. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.36 to 0.59($0.51{\pm}0.10$) and 0.66 to 0.73($0.70{\pm}0.02$), and belong to muscovite-petzite series and brunsvigite, respectively. Calculated $Al_{IV}-Fe/(Fe+Mg)$ diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH){_6}=0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}= 9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}=5.61E-07{\sim}1.79E-05$. It suggest that chlorite from the Daebong deposit is iron-rich chlorite formed due to decreasing temperature from $T>450^{\circ}C$. Calculated $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ and pH values during wall-rock alteration are $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C),\;5.4{\sim}6.5(400^{\circ}C)\;and\;5.1{\sim}5.5(350^{\circ}C)$, respectively. Gain elements (enrichment elements) during wallrock alteration are $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr, Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta and Sb. Elements(Sr, V, Pb, Zn, As, Sb) represent a potentially tools for exploration in mesothermal and epithermal gold-silver deposits.

대봉광상은 선캠브리아기 경기육괴의 호상편마암 또는 화강편마암내에 발달된 단층($N10{\sim}20^{\circ}W,\;40{\sim}60^{\circ}SW$)을 따라 충진한 중열수 함금-은 괴상 석영맥광상이다. 이 광상의 광화작용은 여러번의 단열작용에 의해 형성된 괴상 백색 석영맥(광화I시기)과 투명 석영맥(광화II시기)으로 구성된다. 광화I시기의 열수작용에 의한 변질작용은 견운모화, 녹니석화, 탄산염화, 황철석화, 규화 및 점토화작용 등이 관찰되며, 견운모대는 석영맥과 접촉한 부분에서, 녹니석대는 석영맥으로부터 멀어짐에 따라 관찰된다. 견운모대의 모암변질광물은 대부분이 견운모 및 석영이며, 일부 일라이트, 탄산염광물, 녹염석으로 구성된다. 녹니석대의 모암변질광물은 주로 녹니석, 석영과 소량 견운모, 탄산염광물 및 녹염석으로 구성된다. 견운모의 Fe/(Fe+Mg) 값은 $0.36{\sim}0.59(0.51{\pm}0.10)$이며, 백운모-페차이트족에 해당되고 녹니석의 Fe/(Fe+Mg) 값은 $0.66{\sim}0.73(0.70{\pm}0.02)$이고 대부분 브룬스비자이트에 해당된다. 견운모와 녹니석에 대한 $Al_{IV}-Fe/(Fe+Mg)$의 다이어그램은 변질 시 같은 광종의 견운모와 녹니석의 형성온도를 나타내는 지시자로서 유용하다. 이것은 계산된 녹니석 단종의 활동도가 $a3(Fe_5Al_2Si_3O_{10}(OH){_6}:0.00964{\sim}0.0291,\;a2(Mg_5Al_2Si_3O_{10}(OH){_6}:9.99E-07{\sim}1.87E-05,\;a1(Mg_6Si_4O_{10}(OH){_6}:5.61E-07{\sim}1.79E-05$로서 대봉광상의 녹니석은 철이 풍부한 녹니석으로 비교적 고온($T>450^{\circ}C$)에서 모암과 평형상태에서 온도가 감소함에 따라 형성되었음을 알 수 있다. 모암변질시 $log\;{\alpha}K^+/{\alpha}H^+,\;log\;{\alpha}Na^+/{\alpha}H^+,\;log\;{\alpha}Ca^{2+}/{\alpha}^2H^+$ 값은 각각 $4.6(400^{\circ}C),\;4.1(350^{\circ}C),\;4.0(400^{\circ}C),\;4.2(350^{\circ}C),\;1.8(400^{\circ}C),\;4.5(350^{\circ}C)$이고 pH는 각각 $5.4{\sim}6.5(400^{\circ}C),\;5.1{\sim}5.5(350^{\circ}C)$로서 모암변질시 열수용액은 약산성이었음을 알 수 있다. 모암변질시 이득원소(부화원소)는 $K_2O,\;P_2O_5,\;Na2O$, Ba, Sr Cr, Sc, V, Pb, Zn, Be, Ag, As, Ta, Sb이며 특히 Sr, V, Pb, Zn, As, Sb등의 원소는 현저하게 증가하므로 중열수 및 천열수 금-은광상의 탐사에 지시원소로서 활용될 수 있을 것이다.

Keywords

References

  1. Arnorsson, S., Sigurdsson, S. and Svarvarsson, H. (1982) The chemistry of geothermal waters in Iceland. I. Calculation of aqueous speciation from $0^{\circ}$ to $370^{\circ}C$. Geochimica et Cosmochimica Acta, v. 46, p. 1513­-1532 https://doi.org/10.1016/0016-7037(82)90311-8
  2. Berman, R.G. (1988) Internally-consistent thermody­namic data for minerals in the system $Na_2O-K_2O-CaO-MgO-FeO-Fe_2O_3-Al_2O_3-SiO_2-TiO_2-H_2O-CO_2$. Jour­nal of Petrology, v. 29, p. 445-522 https://doi.org/10.1093/petrology/29.2.445
  3. Chang, H.W and Lee, K.S. (1991) Behavior of elements in hydrothermal alteration zones of granitic rocks: Examples from the Mugeug granodiorite and the Nae­duckri granite, South Korea. Geological Society of Korea Journal, v. 27, p. 156-170
  4. Chang, S.W. (1988) Mineralogy of tungsten ores from Sangdong mine. Ph.D. thesis, Seoul National Uni­versity, 287p
  5. De Caritat, P., Hutcheon, I. and walshe, J.L. (1993) chlo­rite geothermometry: A review. Clays and Clay Min­erals, v. 41, p. 219-239 https://doi.org/10.1346/CCMN.1993.0410210
  6. Garrels, R.M. and Christ, C.L. (1965) Solutions, minerals and equilibria. Freeman, Cooper and Company, 450p
  7. Giggenbach, W.F. (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicator. Geochimica et Cosmochimica Acta, v. 52, p. 2749-2765 https://doi.org/10.1016/0016-7037(88)90143-3
  8. Grant, J.A. (1986) The isocon diagram-A simple solution to Gresens' equation for metasomatic alteration. Eco­nomic Geology, v. 81, p. 1976-1982 https://doi.org/10.2113/gsecongeo.81.8.1976
  9. Gresens, R.L. (1967) Composition-volume relationships of metasomatism. Chemical Geology, v. 2, p. 47-65 https://doi.org/10.1016/0009-2541(67)90004-6
  10. Helgeson, H.C. (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. American Journal of Science, v. 267, p. 729-804 https://doi.org/10.2475/ajs.267.7.729
  11. Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermo­dynamic properties of rock forming minerals. Amer­ican Journal of Science, v. 278-A, 229p
  12. Helgeson, H.C. and Kirkham, D.H. (1978) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II. Debye-Huckel parameters for activity coefficients and relative partial molal properties. American Journal of Science, v. 274, p. 1199-1261 https://doi.org/10.2475/ajs.274.10.1199
  13. Henley, R.W. Truesdell, A.H. and Barton, Jr. P.B. (1984) Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology, v. 1, 267p
  14. Hey, M.H. (1954) A new review of the chlorites. Min­eralogical Magazine, v. 3, p. 87-102
  15. Hofmann, A. (1972) Chromatographic theory of infiltra­tion metasomatism and its application to feldspar. American Journal of Sciences, v. 272, p. 69-90
  16. Hong, Y.K. (1984) Petrology and geochemistry oiJurassic Daejeon and Nonsan granitoids in the Ogcheon fold belt, Korea. Journal of Korean Institute of Mining Geology, v. 17, p. 179-195
  17. Hong, Y.K. (1987) Geochemical characteristics of Pre­cambrian, Jurassic and Cretaceous granites in Korea. Journal of Korean Institute of Mining Geology, v. 20, p. 35-60
  18. Jiang, W.T., Peacor, D.R. and Buseck, P.R. (1994) Chlorite geothermometry-contamination and apparent octahe­dral vacancies. Clays and Clay Minerals, v. 42, p. 593-­605 https://doi.org/10.1346/CCMN.1994.0420512
  19. Kim, S.S., Choi, S.G., Choi, S.H. and Lee, I.W (2002) Hydrothermal alteration and its genetic implication in the Gasado volcanic-hosted epithermal gold-silver deposit: Use in exploration. Journal of Mineralogical Society of Korea. v. 15, p. 205-220
  20. Kranidiotis, P. and MacLean, W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sul­fide deposit. Matagami, Quebec. Economic geology, v. 82, p. 1898-1911 https://doi.org/10.2113/gsecongeo.82.7.1898
  21. Lee, C.H. (1993) Geology, mineralogy, fluid inclusion and stable isotope of gold, silver and antimony ore depos­its of the Dunjeon- Baegjon area, northern Taebaegsan mningdistrict, Korea. Ph.D. thesis, Seoul National University, 422p
  22. Lee, H.K. and Lee, C.H. (1997) Mineralogy and geoche­mistry of green-colored Cr-bearing sericite from hydrothermal alteration zone of the Narim gold deposit, Korea. Economic and Environmental Geology, v. 30, p. 279-288 https://doi.org/10.1016/S0168-6178(97)80043-2
  23. Lee, H.K. Yoo, B.C. and Kim, S.J. (1992) Mineralogy and ore geneses of the Daebong gold-silver deposits, Chungnam, Korea. Journal of Korean Institute of Min­ing Geology, v. 25, p. 297-316
  24. Lee, S.H. and Choi, G.J. (1994) Geochemistry and chem­ical equilibria of coexisting minerals in the gneisses around the Daeheung talc deposits, Korea. Journal of Petrological Society of Korea, v. 3, p. 138-155
  25. Neall, F.B. and Phillips, G.N. (1987) Fluid-wallrock inter­action in an Archean hydrothermal gold deposit: A thermodynamic model for the Hunt mine, Kambalda. Economic Geology, v. 82, p. 1679-1694 https://doi.org/10.2113/gsecongeo.82.7.1679
  26. Ohmoto, H. (1972) Systematics of sulfur and carbon iso­topes in hydrothermal ore deposits. Economic Geol­ogy, v. 67, p. 551-578 https://doi.org/10.2113/gsecongeo.67.5.551
  27. Ohta, E. and Yajima, J. (1988) Magnesium to iron ratio of chlorite as indicater of type of hydrothermal ore deposit. Mining Geology Special Issue, p. 17-22
  28. Pak, S.J., Choi, S.G. and Lee, D.E. (2003) The genetic implication of hydrothermal alteration of epithermal deposits from the Mugeuk area. Journal of Miner­alogical Society of Korea. v. 16, p. 265-280
  29. Robert, F., Poulsen, K.H. and Dube, B. (1997) Gold deposits and their geological classification. Explora­tion 97, April 1997, Toronto, Canada, p. 209-219
  30. Rose, A.W. and Burt, D.M. (1979) Hydrothermal alter­ation: In geochemistry of hydrothermal ore deposits, 2nd ed., Wiley-Interscience, p. 173-235
  31. Shelton, K.L., So, S.C. and Chang, J.S. (1988) Gold-rich mesothermal vein deposits of the Republic of Korea: Geochemical studies of the Jungwon gold area. Eco­nomic Geology, v. 83, p. 1221-1237 https://doi.org/10.2113/gsecongeo.83.6.1221
  32. Walshe, J.L. (1986) A six-component chlorite solid solu­tion model and the conditions of chlorite formation in hydrothermal and geothermal system. Economic Geology, v. 81, p. 687-703
  33. Walshe, J.L. and Solomon, M. (1981) An investigation into the environment of formation of the volcanic­hosted Mt. Lyell copper deposits, using geology, min­eralogy, stable isotopes, and a six-component chlorite solid solution model. Economic Geology, v. 76, p. 246-­284 https://doi.org/10.2113/gsecongeo.76.2.246
  34. Yang, D.Y. (1991) Mineralogy, petrology and geochem­istry of the magnesian skarn-type magnetite deposits at the Shinyemi mine, Republic of Korea. Ph.D. the­sis, Waseda University, 323p
  35. Yoo, B.C., Chi, S.J. and Lee, H.K. (2007) Wallrock alter­ation minerals and mineals chemistry of the Daebong and Samgwang deposits. Korea Society of Economic and Environmental Geology, Spring Conference, p. 501-504
  36. Yoo, B.C. Lee, H.K. and Kim, S.J. (2003) Stable isotope and fluid inclusion studies of the Daebong gold-silver deposits, Republic of Korea. Economic and Environ­mental Geology, v. 36, p. 391-405
  37. Yoo, B.C., Lee, H.K. and White, N.C. (2006) Gold-bearing mesothermal veins from the Gubong mine, Cheon­gyang gold district, Republic of Korea: Fluid inclusion and stable isotope studies. Economic Geology, v. 101, p. 883-901 https://doi.org/10.2113/gsecongeo.101.4.883