• Title/Summary/Keyword: Fe-TiC

Search Result 551, Processing Time 0.024 seconds

FeO, $TiH_2$, Carbon 원료분말을 이용한 Fe-TiC 나노 복합분말 제조 및 소결

  • An, Gi-Bong;Kim, Ji-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.26-26
    • /
    • 2011
  • Fe계 TiC 합금은 미량의 합금원소를 첨가시켜 경화능, 내식성, 내마모성 성질을 개선한 특수 공구용 재료로서 현재 절삭, 내마모성, 광산, 금형재료 등의 분야에 널리 사용되고 있다. 금속과 세라믹의 복합재료인 초경합금은 비열처리용 공구강으로 WC, TiC 등의 4, 5, 6족 금속탄화물에 Co, Ni, Fe등의 철족이 결합금속으로 소결한 복합재료로 WC-Co계 초경합금이 주종을 이루고 있으나, 전략 소재로서 고가인 Co 원료를 대체하기 위한 재료로서 초경재료의 고경도와 공구강의 경제성 및 가공성의 장점을 이용한 Fe-TiC계 초경합금의 연구가 다양하게 진행되고 있다. 본 연구에서는 Fe기지에 서브마이크론 크기의 미세한 TiC 입자가 균일하게 분산된 Fe-TiC 복합분말을 경제적으로 제조하기 위해 순수한 Fe, Ti 원료분말에 비해 단가가 낮고 미세 분쇄가 용이한 FeO, $TiH_2$ 분말을 고에너지 밀링 후 반응 열처리 시키는 유사 기계화학적 공정을 시도하였다. 조성비 Fe-30wt%TiC 복합분말을 제조하기위해 마이크론(micron) 크기의 FeO, $TiH_2$, C 분말을 사용하였고, 1단계로 FeO와 C을 고에너지 밀링으로 혼합 후 반응시켜 환원시키는 공정과 2단계로 이렇게 환원된 분말과 TiH2를 고에너지 밀링으로 다시 혼합, 분쇄한 후 반응열처리 하는 두 단계 공정을 사용하였다. FeO의 환원 단계에서는 $700{\sim}1,000^{\circ}C$ 온도 범위에서 1시간 유지하였고, 고에너지 밀링 시 밀링시간, 회전속도를 변수로 두고 실험하였다. 환원된 분말은 수평관상로를 이용해 아르곤분위기에서 $1,000{\sim}1300^{\circ}C$까지 1시간 유지하여 반응열처리시켜 Fe-TiC 복합분말을 제조하였다. 준비된 복합분말을 XRD와 FE-SEM, EDS, 입도분석기 (LPSA) 등을 이용해 분말의 형태와 특성, 상, 조성, 입도, 분산도 등을 조사하였다. 제조된 Fe-TiC 나노복합분말을 방전플라즈마소결(SPS) 과 상압소결 실험을 진행하였다. Fe-TiC 복합분말 제조공정의 첫 번째 단계인 FeO의 환원반응은 $800^{\circ}C$이상의 온도에서 Fe로 환원이 진행됨을 확인하였다. 두 번째 단계인 반응열처리공정에서는 $1,000^{\circ}C$ 이상에서 TiC가 형성됨을 XRD 상분석을 통해 확인할 수 있었고, $1,100^{\circ}C$ 이상의 온도에서 반응열처리를 했을 때 XRD 분석결과와 산소 조성 분석 결과로부터 반응의 완결성과 순도에서 최적 온도 조건임을 확인하였다. 온도를 $1,300^{\circ}C$로 증가시킬 경우 반응의 완결성에 큰 변화가 없는 반면 분말입자간의 목형성이 일어나 가소결 되는 것을 FE-SEM을 통해 관찰하였다. 또한 최적조건으로 제조된 Fe-TiC 복합분말의 입도분석과 FE-SEM/EDS 관찰/분석을 시행한 결과 평균 입도 0.6 ${\mu}m$의 미세한 Fe-TiC 복합분말 내에 Fe분말 주변과 내부에 나노크기의 TiC입자가 균일하게 분산되어 존재하는 것을 확인하였다.

  • PDF

Fabrication of Fe-TiC Composite by High-Energy Milling and Spark-Plasma Sintering

  • Tuan, N.Q.;Khoa, H.X.;Vieta, N.H.;Lee, Y.H.;Lee, B.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.338-344
    • /
    • 2013
  • Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark-plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark-plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and fracture toughness of Fe-TiC sintered compact were investigated.

Spark Plasma Sintering of Fe-TiC Composite Powders (Fe-TiC 복합재료분말의 방전플라즈마소결)

  • Lee, Yong-Heui;Hyunh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.382-388
    • /
    • 2014
  • Fe-TiC composite powder was fabricated by high-energy milling of powder mixture of (Fe, TiC) and (FeO, $TiH_2$, C) as starting materials, respectively. The latter one was heat-treated for reaction synthesis of TiC phase after milling. Both powders were spark-plasma sintered at various temperatures of $680-1070^{\circ}C$ for 10 min. with sintering pressure of 70 MPa and the heating rate of $50^{\circ}C/min$. under vacuum of 0.133 Pa. Density and hardness of the sintered compact was investigated. Fe-TiC composite fabricated from (FeO, $TiH_2$, C) as starting materials showed better sintered properties. It seems to be resulted from ultra-fine TiC particle size and its uniform distribution in Fe-matrix compared to the simply mixed (Fe, TiC) powder.

Fabrication of Fe-TiC Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis (고에너지 밀링 및 합성반응에 의한 Fe-TiC 복합분말 제조)

  • Ahn, Ki-Bong;Lee, Byung-Hun;Lee, Young-Hee;Khoa, Hyunh Xuan;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at $900^{\circ}C$ for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional $TiH_2$ powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at $1000{\sim}1200^{\circ}C$ for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.

Microstructures and Magnetic Properties of $ThMn_{l2}-type$ Sm-Fe-Ti Melt-Spun Ribbons ($ThMn_{12}$형 Sm-Fe-Ti 급냉응고리본의 미세구조 및 자기특성)

  • 김윤배;유권상;김동환;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.25-29
    • /
    • 1991
  • It has been found that the as-quenched ribbons of $Sm_{x}Fe_{100-x-y}Ti_{y}(3.8{\leq}x{\leq}11.5,\;3.8{\leq}y{\leq}19.2)$ are composed of metastable $TbCu_{7}-type$ structure, ${\alpha}-(Fe,\;Ti),\;Fe_{2}Ti$ and an unknown phase accompanying strong diffraction line at $d=2.14{\AA}$. The metastable $TbCu_{7}-type$ phase, which was formed by rapid quenching, did not transform fully to the stable phases after annealing at $850^{\circ}C$ for 45 minutes except the one existed in $SmFe_{11}Ti$ melt-spun ribbon. The $SmFe_{11}Ti$ melt-spun ribbon, annealed at $850^{\circ}C$ for 45 minutes in vacuum, was found to be composed of $ThMn_{12}$. $\alpha$-(Fe, Ti) and $Fe_{2}Ti$ phases. The formation of $\alpha$-(Fe, Ti) and $Fe_{2}Ti$ phases in this melt-spun ribbon was due to the evaporation of Sm atoms during the high temperature annealing. The atomic ratios for the surface and the inside of $SmFe_{11}Ti$ melt-spun ribbon annealed in vacuum were $SmFe_{25.8}Ti_{2.6}$ and $SmFe_{11.7}Ti_{1.0}$ respectively. It is thought to be that much of $\alpha$-(Fe, Ti) and $Fe_{2}Ti$ phases exist on the surface of ribbon.

  • PDF

Fe-TiC Composite Powders Fabricated by Planetary Ball Mill Processing (유성볼밀공정으로 제조된 Fe-TiC 복합재료 분말)

  • Lee, B.H.;Ahn, K.B.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, B.K.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2015
  • Fe-TiC composite powders were fabricated by planetary ball mill processing. Two kinds of powder mixtures were prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, $TiH_2$, Carbon) powders, respectively. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) were varied. For (Fe, $TiH_2$, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing was added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity were investigated.

Effects of Cr, B, Ti and Si on Rolling Characteristics in Fe-30at.%A1 Alloy (Fe-30at.%A1 합금의 압연성에 미치는 Cr, B, Ti 및 Si 첨가효과)

  • Choi, Dap-Chun;Lee, Ji-Sung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.2
    • /
    • pp.77-85
    • /
    • 2003
  • Some alloying elements such as Cr, B, Ti and Si were added individually or as a mixture to Fe-30 at.%Al alloys. The alloys were melted using an arc furnace and then heat-treated for homogenization at 1000$^{\circ}C$ for 7 days and followed by rolling at 1000$^{\circ}C$. The alloying elements on rolling characteristics were investigated by the microstructures and fracture mode before and after rolling. The microstructures before rolling showed that all of the alloys had equiaxed grains. On the other hand, the microstructures of rolling plane as well as its perpendicular plane became elongated after rolling. The alloys such as Fe-30Al, Fe-30Al-3Ti, Fe-30Al-0.5B, Fe-30Al-5Cr and Fe-30Al-3Ti-0.5B revealed better rolling behaviour from the point that intergranular and cleavage fractures were not fundamentally occurred. But the addition of 5Ti or 3Si to Fe-Al alloys had detrimental effects. The Ti-added alloy system such as Fe-30Al-5Ti, Fe-30Al-5Ti-5Cr, Fe-30Al-3Ti-5Cr and Fe-30Al-5Ti-0.5B were cracked through grain and showed cleavage fracture. The Si-added alloy system such as Fe-30Al-5Si, Fe-27Al-3Si and Fe-27Al-5Cr-3Si were cracked along the grain boundary and showed intergranular fracture. $DO_3{\leftrightarrow}B_2$ transition temperature of Fe-30at.%Al alloy was 520$^{\circ}C$, whereas the addition of 3Ti and 3Ti+0.5B comparably increased the temperature to 797 and 773$^{\circ}C$, respectively.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process

  • Kim, Hyun-Ju;Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.249-252
    • /
    • 2012
  • Fe doped $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and $TiO_2$ sol. Fe doped $TiO_2$ particles were reacted in the temperature range of 170 to $200^{\circ}C$ for 6 h. The microstructure and phase of the synthesized Fe doped $TiO_2$ nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped $TiO_2$ nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped $TiO_2$ nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped $TiO_2$ nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped $TiO_2$ nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped $TiO_2$ nanoparticles was about 16% up to ${\sim}700^{\circ}C$; water of crystallization was dehydrated at $271^{\circ}C$. The transition of Fe doped $TiO_2$ nanoparticle phase from anatase to rutile occurred at almost $561^{\circ}C$. The amount of rutile phase of the synthesized Fe doped $TiO_2$ nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.

New Hypothesis "Exhaustion of Diffusion-Contributable Vacancies in Core/Rim Structure"

  • Hayshi, Koji;Yanaba, Yutaka
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.8-8
    • /
    • 2002
  • TiC core/(Ti,Mo)C rim structure in TiC-$Mo_2C$-Ni base cermet which is generally prepared by sintering below 145$0^{\circ}C$ had been believed to be generated by the solid diffusion of Mo atoms 1 into TiC grains (D. Moskowitz and M.Humenik, 1r.:1966). Afterward, it was clarified that the c core/rim structure is generated by solution/re-precipitation mechanism : (1) $Mo_2C$ grains and s small TiC grains dissolve into the Ni liquid, (2) the dissolved Mo, Ti and C atoms migrate to the s surface of TiC coarse grains, (3) the Mo, Ti and C precipitate on the surface of TiC coarse g grains and form (Ti,Mo)C solid solution rim, and (4) the Ostwald ripening (grain growth by s solution/re-precipitation mechanism) of TiC-core/(Ti,Mo)-rim grains continues, and thus the w width of (Ti,Mo)C rim (at the same time, the grain size) increases with sintering time, etc. ( (H.Suzuki, K.Hayashi and O.Terada: 1973). The TiC-core was found not to disappear even by s sintering at 190$0^{\circ}C$ (ibid.: 1974) Recently, FeSi core/$Fe_2Si_5$-rim structure in Fe-66.7at%Si thermoelectric aIloy was found to also h hardly shrink and disappear by long heating at an appropriate temperature (1999: M.Tajima and K K.hayashD. Then, the authors considered its cause, and clarified experimentaIly that the disappearance of FeSi-core/$Fe_2Ski_5$-rim structure could be attributed to the exhaustion of diffusion-contributable vacancies in core/rim structure (N.Taniguchi and K.Hayashi:2001). At p present, the authors and my coworker are investigating whether the non-disappearance of TiC c core can be explained also from the new hypothesis "Exhaustion of diffusion-contributable v vacancies in corelrim structure".ure".uot;.

  • PDF