• 제목/요약/키워드: Fe-Si alloy

검색결과 412건 처리시간 0.037초

CoFeSiB 아몰퍼스합금 자기리본 변위센서 개발에 관한 연구 (A Study on Development of the Displacement Sensor of CoFeSiB Amorphous Alloy Magnetic Ribbon)

  • 강재덕;신용진
    • 한국전기전자재료학회논문지
    • /
    • 제14권2호
    • /
    • pp.163-168
    • /
    • 2001
  • This dissertation describes the development of a sensor for measuring microscopic displacement where we use CoFeSiB amorphous alloy magnetic ribbon having near zero magnetostrictive properties. For the development of the sensor, we first fabricate amorphous alloy magnetic ribbon, and then investigate its physical and magnetic properties. Finally, its possibility of practical application as a displacement sensor is discussed. The experimental samples were made of near zero magnetostrictive (Co$\_$0.94/Fe$\_$0.06/)$\_$9/Si$_2$B$\_$19/ alloy which were fabricated by a rapid liquid quenching method. As a results, we got amorphous alloy magnetic ribbons of 12㎛ in thickness, 10 mm in length, and 2.5 m in width. It was found that the crystallization temperature and the Curie temperature are around 451$\^{C}$ and around 441$\^{C}$ respectively. We couldn't observe any noticeable change of the impedance frequency of 10MHz, but observed the impedance change of 3.76 %/Oe at 100 MHz. The inductance was nearly stable over the frequency range of 1∼10 MHz, In addition, it was observed that the variation of the inductance and the impedance were linear within the displacement ranges of 20∼60㎛. As the results of the experiments, it is suggested that the displacement sensor which is fabricated by using amorphous alloy magnetic ribbon of (Co$\_$0.04/Fe$\_$0.06/)$\_$79/Si$_2$B$\_$19/ compound, can be used as a sensor to detect microscopic displacement.

  • PDF

방전플라즈마소결로 제조된 나노결정 FeNiCrMoMnSiC 합금의 오스테나이트 안정성과 기계적 특성 (Austenite Stability and Mechanical Properties of Nanocrystalline FeNiCrMoMnSiC Alloy Fabricated by Spark Plasma Sintering)

  • 박정빈;전준협;서남혁;김광훈;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권4호
    • /
    • pp.336-341
    • /
    • 2021
  • In this study, a nanocrystalline FeNiCrMoMnSiC alloy was fabricated, and its austenite stability, microstructure, and mechanical properties were investigated. A sintered FeNiCrMoMnSiC alloy sample with nanosized crystal was obtained by high-energy ball milling and spark plasma sintering. The sintering behavior was investigated by measuring the displacement according to the temperature of the sintered body. Through microstructural analysis, it was confirmed that a compact sintered body with few pores was produced, and cementite was formed. The stability of the austenite phase in the sintered samples was evaluated by X-ray diffraction analysis and electron backscatter diffraction. Results revealed a measured value of 51.6% and that the alloy had seven times more austenite stability than AISI 4340 wrought steel. The hardness of the sintered alloy was 60.4 HRC, which was up to 2.4 times higher than that of wrought steel.

급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성 (Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process)

  • 김태준;김덕현;이세동;백아름;임수근
    • 한국주조공학회지
    • /
    • 제39권2호
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.

P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향 (The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2)

  • 배철훈
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1883-1889
    • /
    • 2013
  • Fe-Si계 합금은 우주탐사용으로 응용되고 있는 Si-Ge합금보다는 낮은 성능지수를 나타내지만 원료가 풍부하여 저가이고, 제조가 간단하며, $800^{\circ}C$까지 사용가능한 중고온용 열전발전재료이다. 본 연구에서는 고주파 진공유도로를 이용해서 제조한 p형 $FeSi_2$의 열전물성에 미치는 입자크기 및 첨가물 영향에 대해 조사하였다. 조성입자크기가 작을수록 소결밀도 증가와 함께 입자와 입자간의 연결성 향상에 의해 도전율이 증가하였다. Seebeck 계수는 600~800K에서 최고값을 나타내었고, 잔존하는 ${\varepsilon}$-FeSi 금속전도상에 의해 약간 감소하였다. $Fe_2O_3$$Fe_3O_4$를 첨가한 경우, 잔존 금속전도상 및 Si 결핍양 증가에 의해 도전율은 증가하였고 Seebeck 계수는 감소하였다. 반면에 $SiO_2$를 첨가한 경우에는 도전율과 Seebeck 계수 모두 상승하였다.

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

Fe-6.5wt% Si 합금의 역학 특성에 미치는 어닐링 효과 (Effect of Annealing on the Mechanical properties of Fe-6.5wt% Si Alloy)

  • 윤영기;윤희석;홍성길
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2909-2916
    • /
    • 2000
  • 6.5wt% Si steel is widely known as an excellent magnetic material because its magnetostriction is nearly zero. The AX magnetic properties as magnetostriction of 6.5% Si steel were evaluated and compared with those of conventional 3% Si steel sheet. In this paper, the fracture behavior of the poly crystals and single crystals of Fe-6.5wt%Si alloy has been observed. Single crystals were prepared by Floating Zone(FZ) method, which melts the alloy by the use of high temperature electron beam in pure argon gas condition. And the single crystals were annealed at 500$^{\circ}C$ and 700$^{\circ}C$ respectively and tensile tested at room temperature. According to the result, B2 phase has more good elongation than DO$_3$ phase. It was also found that the fracture surfaces of the single crystals have hairline facets in same direction, and the facets change the direction according to the single crystal phase.

방열소재용 알루미늄 주조합금 설계 및 특성평가 (Design and Evaluation of Aluminum Casting Alloys for Thermal Managing Application)

  • 신제식;김기태;고세현;안동진;김명호
    • 한국주조공학회지
    • /
    • 제33권1호
    • /
    • pp.22-31
    • /
    • 2013
  • In order to develop an aluminum alloy, that can combine high thermal conductivity and good castability and anodizability, aluminum alloys with low Si content, such as Al-(0.5~1.5)Mg-1Fe-0.5Si and Al-(1.0~1.5)Si-1Fe-1Zn, were designed. The developed aluminum alloys exhibited 170~190% thermal conductivity (160~180 W/mK), 60~85% fluidity, and equal or higher ultimate tensile strength compared with those of the ADC12 alloy. In each developed alloy system, the thermal conductivity decreased and the strength increased with the increment of Mg and Si, which are the significant alloying elements. The fluidity was in reverse proportion to the Mg content and in proportion to the Si content. The Al-(0.5~1.5)Mg-1Fe-0.5Si alloys exhibited better fluidity in thick-wall castings, while the Al-(1.0~1.5)Si-1Fe-1Zn alloys were better in thin-wall castability due to their lower surface energies. The fluidity behavior was complexly affected by the heat release for the solidification, viscosity, solidification range, and the type, quantity, and formation juncture of the main secondary phase.

A STUDY ON THE TRIBOLOGICAL CHARACTERISTICS OF FeCrSi/A366.0 ALLOY COMPOSITES

  • Song, Tae-Hoon;Choi, Yong-Bum;Park, Sung-Ho;Huh, Sun-Chul;Park, Won-Jo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.262-267
    • /
    • 2007
  • In this paper, we study about wear properties for the metal matrix composites fabricated by low pressure infiltration process. Metal fiber preform reinforced aluminum alloy composite were fabricated by low pressure casting process under 0.4MPa. Infiltration condition was changed the pressure infiltration time of 1 s, 2 s and 5 s under a constant pressure of 0.4MPa. The molten alloy completely infiltrated the FeCrSi metal perform regardless of the increase in the pressure acceleration time. However, the infiltration time at the pressure acceleration time of 1s was shorter than at the pressure acceleration time of 2s or 5s. The FeCrSi/A366.0 composite was investigated the porosity. The porosity is reducing as the pressure acceleration time compared with the pressure acceleration time of 2s and 5s. The FeCrSi/A366.0 composites were investigated the wear resistance. FeCrSi/A366.0 composite at pressure acceleration time of 1s has excellent wear resistance.

  • PDF