• Title/Summary/Keyword: Fe-S cluster

Search Result 55, Processing Time 0.026 seconds

Functional Roles of the Aromatic Residues in the Stabilization of the [$Fe_4S_4$] Cluster in the Iro Protein from Acidithiobacillus ferrooxidans

  • Zeng, Jia;Liu, Qing;Zhang, Xiaojian;Mo, Hongyu;Wang, Yiping;Chen, Qian;Liu, Yuandong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.294-300
    • /
    • 2010
  • The Iro protein is a member of the HiPIP family with the [$Fe_4S_4$] cluster for electron transfer. Many reports proposed that the conserved aromatic residues might be responsible for the stability of the iron-sulfur cluster in HiPIP. In this study, Tyr10 was found to be a critical residue for the stability of the [$Fe_4S_4$] cluster, according to site-directed mutagenesis results. Tyr10, Phe26, and Phe48 were essential for the stability of the [$Fe_4S_4$] cluster under acidic condition. Trp44 was not involved in the stability of the [$Fe_4S_4$] cluster. Molecular structure modeling for the mutant Tyr10 proteins revealed that the aromatic group of Tyr10 may form a hydrophobic barrier to protect the [$Fe_4S_4$] cluster from solvent.

Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.3
    • /
    • pp.86-90
    • /
    • 2020
  • Iron-sulfur (Fe-S) clusters are one of the most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S clusters are generated via several distinctive biogenesis mechanisms, among which the ISC (Iron-Sulfur Cluster) mechanism plays a house-keeping role to satisfy cellular needs for Fe-S clusters. The Escherichia coli ISC mechanism is maintained by several essential protein factors, whose structural characterization has been of great interest to reveal mechanistic details of the Fe-S cluster biogenesis mechanisms. In particular, nuclear magnetic resonance (NMR) spectroscopic approaches have contributed much to elucidate dynamic features not only in the structural states of the protein components but also in the interaction between them. The present minireview discusses recent advances in elucidating structural features of IscU, the key player in the E. coli ISC mechanism. IscU accommodates exceptional structural flexibility for its versatile activities, for which NMR spectroscopy was particularly successful. We expect that understanding to the structural diversity of IscU provides critical insight to appreciate functional versatility of the Fe-S cluster biogenesis mechanism.

Assembly Mechanism of [$Fe_2S_2$] Cluster in Ferredoxin from Acidithiobacillus ferrooxidans

  • Chen, Qian;Mo, Hongyu;Tang, Lin;Du, Juan;Qin, Fang;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [$Fe_2S_2$] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [$Fe_2S_2$] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [$Fe_2S_2$] cluster assembly in ferredoxin follows the AUS pathway.

Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2- (R = 2-, 3-, and 4-Pyridinemethane) Clusters

  • Kim, Yu-Jin;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.48-54
    • /
    • 2012
  • The $[Fe_4S_4]^{2+}$ clusters with 2-, 3-, and 4-pyridinemethanethiolate (S2-Pic, S3-Pic, and S4-Pic, respectively) terminal ligands have been synthesized from the ligand substitution reaction of the $(^nBu_4N)_2[Fe_4S_4Cl_4]$ (I) cluster. The new $(^nBu_4N)_2[Fe_4S_4(SR)_4]$ (R = 2-Pic; II, 3-Pic; III, 4-Pic; IV) clusters were characterized by FTIR and UV-Vis spectroscopy. Cluster II was crystallized in the monoclinic space group C2/c with a = 24.530 (5) $\AA$, b = 24.636(4) $\AA$, c = 21.762(4) $\AA$, ${\beta}=103.253(3)^{\circ}$, and Z = 8. The X-ray structure of II showed two unique 2:2 site-differentiated $[Fe_4S_4]^{2+}$ clusters due to the bidentate-mode coordination by 2-pyridinemethanethiolate ligands. Cluster III was crystallized in the same monoclinic space group C2/c with a = 26.0740(18) $\AA$, b = 23.3195(16) $\AA$, c = 22.3720(15) $\AA$, ${\beta}=100.467(2)^{\circ}$, and Z = 8. The 3-pyridinemethanethiolate ligand of III was coordinated to the $[Fe_4S_4]^{2+}$ core as a terminal mode. Cluster IV with 4-pyridinemethanethiolate ligands was found to have a similar structure to the cluster III. Fully reversible $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ redox waves were observed from all three clusters by cyclic voltammetry measurement. The electrochemical potentials for the $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ transition decreased in the order of II, III and IV, and the reduction potential changes by the ligands were explained based on the structural differences among the complexes. The complex III was reacted with sulfonium salt of $[PhMeSCH_2-p-C_6H_4CN](BF_4)$ in MeCN to test possible radical-involving reaction as a functional model of the [$Fe_4S_4$]-SAM (S-adenosylmethionine) cofactor. However, the isolated reaction products of 3-pyridinemethanethiolate-p-cyanobenzylsulfide and thioanisole suggested that the reaction followed an ionic mechanism and the products formed from the terminal ligand attack to the sulfonium.

Asp97 is a Crucial Residue Involved in the Ligation of the [$Fe_4S_4$] Cluster of IscA from Acidithiobacillus ferrooxidans

  • Jiang, Huidan;Zhang, Xiaojian;Ai, Chenbing;Liu, Yuandong;Liu, Jianshe;Qiu, Guanahou;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1070-1075
    • /
    • 2008
  • IscA was proposed to be involved in the iron-sulfur cluster assembly encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In our previous study, the IscA from A. ferrooxidans was successfully expressed in Escherichia coli, and purified to be a [$Fe_4S_4$] -cluster-containing protein. Cys35, Cys99, and Cys101 were important residues in ligating with the [$Fe_4S_4$] cluster. In this study, Asp97 was found to be another ligand for the iron-sulfur cluster binding according to site-directed mutagenesis results. Molecular modeling for the IscA also showed that Asp97 was a strong ligand with the [$Fe_4S_4$] cluster, which was in good agreement with the experimental results. Thus, the [$Fe_4S_4$] cluster in IscA from A. ferrooxidans was ligated by three cysteine residues and one aspartic acid.

Expression, Purification, and Characterization of Iron-Sulfur Cluster Assembly Regulator IscR from Acidithiobacillus ferrooxidans

  • Zeng, Jia;Zhang, Ke;Liu, Jianshe;Qiu, Guanzhou
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1672-1677
    • /
    • 2008
  • IscR (iron-sulfur cluster regulator) has been reported to be a repressor of the iscRSUA operon, and in vitro transcription reactions have revealed that IscR has a repressive effect on the iscR promoter in the case of [$Fe_{2}S_{2}$] cluster loading. In the present study, the iscR gene from A. ferrooxidans ATCC 23270 was cloned and successfully expressed in Escherichia coli, and then purified by one-step affinity chromatography to homogeneity. The molecular mass of the IscR was 18 kDa by SDS-PAGE. The optical and EPR spectra results for the recombinant IscR confirmed that an iron-sulfur cluster was correctly inserted into the active site of the protein. However, no [$Fe_{2}S_{2}$] cluster was assembled in apoIscR with ferrous iron and sulfide in vitro. Therefore, the [$Fe_{2}S_{2}$] cluster assembly in IscR in vivo would appear to require scaffold proteins and follow the Isc "AUS" pathway.

$^{13}C$ and $^{57}Fe$ END OR of Nitrogenase: Can it Tell the Substrate-Binding Site in the Active Site?

  • 이홍인
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.18-18
    • /
    • 2002
  • Nitrogenase, comprised of the MoFe and Fe proteins, catalyzes the reduction of dinitrogen to ammonia at ambient temperature and pressure. The MoFe protein contains two metal centers, the P-cluster (Fe8S7-8) and the FeMo-cofactor (Fe7S9:homocitrate), the substrate binding site. Despite the availability of the crystal structure of the MoFe protein, suprisingly little is known about the molecular details of catalysis at the active site, and no small-molecule substrate or inhibitor had ever been shown to directly interact with a protein-bound cluster of the functioning enzyme, until our electron-nuclear double resonance(ENDOR) study of CO-inhibited nitrogenase.(omitted)

  • PDF

Insights into Systems for Iron-Sulfur Cluster Biosynthesis in Acidophilic Microorganisms

  • Myriam, Perez;Braulio, Paillavil;Javiera, Rivera-Araya;Claudia, Munoz-Villagran;Omar, Orellana;Renato, Chavez;Gloria, Levican
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1110-1119
    • /
    • 2022
  • Fe-S clusters are versatile and essential cofactors that participate in multiple and fundamental biological processes. In Escherichia coli, the biogenesis of these cofactors requires either the housekeeping Isc pathway, or the stress-induced Suf pathway which plays a general role under conditions of oxidative stress or iron limitation. In the present work, the Fe-S cluster assembly Isc and Suf systems of acidophilic Bacteria and Archaea, which thrive in highly oxidative environments, were studied. This analysis revealed that acidophilic microorganisms have a complete set of genes encoding for a single system (either Suf or Isc). In acidophilic Proteobacteria and Nitrospirae, a complete set of isc genes (iscRSUAX-hscBA-fdx), but not genes coding for the Suf system, was detected. The activity of the Isc system was studied in Leptospirillum sp. CF-1 (Nitrospirae). RT-PCR experiments showed that eight candidate genes were co-transcribed and conform the isc operon in this strain. Additionally, RT-qPCR assays showed that the expression of the iscS gene was significantly up-regulated in cells exposed to oxidative stress imposed by 260 mM Fe2(SO4)3 for 1 h or iron starvation for 3 h. The activity of cysteine desulfurase (IscS) in CF-1 cell extracts was also upregulated under such conditions. Thus, the Isc system from Leptospirillum sp. CF-1 seems to play an active role in stressful environments. These results contribute to a better understanding of the distribution and role of Fe-S cluster protein biogenesis systems in organisms that thrive in extreme environmental conditions.

Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process

  • Wonchull Kang
    • Molecules and Cells
    • /
    • v.46 no.12
    • /
    • pp.736-742
    • /
    • 2023
  • NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.