DOI QR코드

DOI QR Code

Structural Insights and Mechanistic Understanding of Iron-Molybdenum Cofactor Biosynthesis by NifB in Nitrogenase Assembly Process

  • Wonchull Kang (Department of Chemistry, College of Natural Sciences, Soongsil University)
  • 투고 : 2023.08.16
  • 심사 : 2023.09.13
  • 발행 : 2023.12.31

초록

NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.

키워드

과제정보

This work was supported by the Soongsil University Research Fund (New Professor Support Research) of 2021.

참고문헌

  1. Agar, J.N., Krebs, C., Frazzon, J., Huynh, B.H., Dean, D.R., and Johnson, M.K. (2000a). IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39, 7856-7862. https://doi.org/10.1021/bi000931n
  2. Agar, J.N., Yuvaniyama, P., Jack, R.F., Cash, V.L., Smith, A.D., Dean, D.R., and Johnson, M.K. (2000b). Modular organization and identification of a mononuclear iron-binding site within the NifU protein. J. Biol. Inorg. Chem. 5, 167-177. https://doi.org/10.1007/s007750050361
  3. Buren, S., Jimenez-Vicente, E., Echavarri-Erasun, C., and Rubio, L.M. (2020). Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921-4968. https://doi.org/10.1021/acs.chemrev.9b00489
  4. Burgess, B.K. and Lowe, D.J. (1996). Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3012. https://doi.org/10.1021/cr950055x
  5. Buscagan, T.M. and Rees, D.C. (2019). Rethinking the nitrogenase mechanism: activating the active site. Joule 3, 2662-2678. https://doi.org/10.1016/j.joule.2019.09.004
  6. Chandramouli, K., Unciuleac, M.C., Naik, S., Dean, D.R., Huynh, B.H., and Johnson, M.K. (2007). Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46, 6804-6811. https://doi.org/10.1021/bi6026659
  7. Christiansen, J., Goodwin, P.J., Lanzilotta, W.N., Seefeldt, L.C., and Dean, D.R. (1998). Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37, 12611-12623. https://doi.org/10.1021/bi981165b
  8. Cotton, M.S., Rupnik, K., Broach, R.B., Hu, Y., Fay, A.W., Ribbe, M.W., and Hales, B.J. (2009). VTVH-MCD study of the Delta nifB Delta nifZ MoFe protein from Azotobacter vinelandii. J. Am. Chem. Soc. 131, 4558-4559. https://doi.org/10.1021/ja807525m
  9. Curatti, L., Ludden, P.W., and Rubio, L.M. (2006). NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc. Natl. Acad. Sci. U. S. A. 103, 5297-5301. https://doi.org/10.1073/pnas.0601115103
  10. Einsle, O. and Rees, D.C. (2020). Structural enzymology of nitrogenase enzymes. Chem. Rev. 120, 4969-5004. https://doi.org/10.1021/acs.chemrev.0c00067
  11. Fajardo, A.S., Legrand, P., Paya-Tormo, L.A., Martin, L., Pellicer Marti Nez, M.T., Echavarri-Erasun, C., Vernede, X., Rubio, L.M., and Nicolet, Y. (2020). Structural insights into the mechanism of the radical SAM carbide synthase NifB, a key nitrogenase cofactor maturating enzyme. J. Am. Chem. Soc. 142, 11006-11012. https://doi.org/10.1021/jacs.0c02243
  12. Fay, A.W., Blank, M.A., Rebelein, J.G., Lee, C.C., Ribbe, M.W., Hedman, B., Hodgson, K.O., and Hu, Y. (2016). Assembly scaffold NifEN: a structural and functional homolog of the nitrogenase catalytic component. Proc. Natl. Acad. Sci. U. S. A. 113, 9504-9508. https://doi.org/10.1073/pnas.1609574113
  13. Fay, A.W., Wiig, J.A., Lee, C.C., and Hu, Y. (2015). Identification and characterization of functional homologs of nitrogenase cofactor biosynthesis protein NifB from methanogens. Proc. Natl. Acad. Sci. U. S. A. 112, 14829-14833. https://doi.org/10.1073/pnas.1510409112
  14. Fu, W., Jack, R.F., Morgan, T.V., Dean, D.R., and Johnson, M.K. (1994). nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry 33, 13455-13463. https://doi.org/10.1021/bi00249a034
  15. George, S.J., Igarashi, R.Y., Xiao, Y., Hernandez, J.A., Demuez, M., Zhao, D., Yoda, Y., Ludden, P.W., Rubio, L.M., and Cramer, S.P. (2008). Extended X-ray absorption fine structure and nuclear resonance vibrational spectroscopy reveal that NifB-co, a FeMo-co precursor, comprises a 6Fe core with an interstitial light atom. J. Am. Chem. Soc. 130, 5673-5680. https://doi.org/10.1021/ja0755358
  16. Georgiadis, M.M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J.J., and Rees, D.C. (1992). Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257, 1653-1659. https://doi.org/10.1126/science.1529353
  17. Jenner, L.P., Cherrier, M.V., Amara, P., Rubio, L.M., and Nicolet, Y. (2021). An unexpected P-cluster like intermediate en route to the nitrogenase FeMo-co. Chem. Sci. 12, 5269-5274. https://doi.org/10.1039/D1SC00289A
  18. Jiang, X., Coroian, D., Barahona, E., Echavarri-Erasun, C., CastellanosRueda, R., Eseverri, A., Aznar-Moreno, J.A., Buren, S., and Rubio, L.M. (2022). Functional nitrogenase cofactor maturase NifB in mitochondria and chloroplasts of Nicotiana benthamiana. mBio 13, e0026822.
  19. Johnson, D.C., Dos Santos, P.C., and Dean, D.R. (2005). NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. Biochem. Soc. Trans. 33, 90-93. https://doi.org/10.1042/BST0330090
  20. Kaiser, J.T., Hu, Y., Wiig, J.A., Rees, D.C., and Ribbe, M.W. (2011). Structure of precursor-bound NifEN: a nitrogenase FeMo cofactor maturase/insertase. Science 331, 91-94. https://doi.org/10.1126/science.1196954
  21. Kang, W. (2023). Unveiling nature's nitrogen-fixing secrets. Mol. Cells 46, 535-537. https://doi.org/10.14348/molcells.2023.0086
  22. Kang, W., Rettberg, L.A., Stiebritz, M.T., Jasniewski, A.J., Tanifuji, K., Lee, C.C., Ribbe, M.W., and Hu, Y. (2021). X-ray crystallographic analysis of NifB with a full complement of clusters: structural insights into the radical SAM-dependent carbide insertion during nitrogenase cofactor assembly. Angew. Chem. Int. Ed. Engl. 60, 2364-2370. https://doi.org/10.1002/anie.202011367
  23. Lancaster, K.M., Hu, Y., Bergmann, U., Ribbe, M.W., and DeBeer, S. (2013). X-ray spectroscopic observation of an interstitial carbide in NifEN-bound FeMoco precursor. J. Am. Chem. Soc. 135, 610-612. https://doi.org/10.1021/ja309254g
  24. Liu, Y.A., Quechol, R., Solomon, J.B., Lee, C.C., Ribbe, M.W., Hu, Y., Hedman, B., and Hodgson, K.O. (2022). Radical SAM-dependent formation of a nitrogenase cofactor core on NifB. J. Inorg. Biochem. 233, 111837.
  25. Marinoni, E.N., de Oliveira, J.S., Nicolet, Y., Raulfs, E.C., Amara, P., Dean, D.R., and Fontecilla-Camps, J.C. (2012). (IscS-IscU)2 complex structures provide insights into Fe2S2 biogenesis and transfer. Angew. Chem. Int. Ed. Engl. 51, 5439-5442. https://doi.org/10.1002/anie.201201708
  26. Nicolet, Y., Cherrier, M.V., and Amara, P. (2022). Radical SAM enzymes and metallocofactor assembly: a structural point of view. ACS Bio Med Chem Au 2, 36-52. https://doi.org/10.1021/acsbiomedchemau.1c00044
  27. Nicolet, Y., Rohac, R., Martin, L., and Fontecilla-Camps, J.C. (2013). X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters. Proc. Natl. Acad. Sci. U. S. A. 110, 7188-7192. https://doi.org/10.1073/pnas.1302388110
  28. Oberg, N., Precord, T.W., Mitchell, D.A., and Gerlt, J.A. (2022). RadicalSAM. org: a resource to interpret sequence-function space and discover new radical SAM enzyme chemistry. ACS Bio Med Chem Au 2, 22-35. https://doi.org/10.1021/acsbiomedchemau.1c00048
  29. Olson, J.W., Agar, J.N., Johnson, M.K., and Maier, R.J. (2000). Characterization of the NifU and NifS Fe-S cluster formation proteins essential for viability in Helicobacter pylori. Biochemistry 39, 16213-16219. https://doi.org/10.1021/bi001744s
  30. Rees, D.C., Akif Tezcan, F., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O., and Howard, J.B. (2005). Structural basis of biological nitrogen fixation. Philos. Trans. A Math. Phys. Eng. Sci. 363, 971-984, discussion 1035-1040. https://doi.org/10.1098/rsta.2004.1539
  31. Rettberg, L.A., Wilcoxen, J., Lee, C.C., Stiebritz, M.T., Tanifuji, K., Britt, R.D., and Hu, Y. (2018). Probing the coordination and function of Fe(4)S(4) modules in nitrogenase assembly protein NifB. Nat. Commun. 9, 2824.
  32. Ribbe, M.W., Hu, Y., Hodgson, K.O., and Hedman, B. (2014). Biosynthesis of nitrogenase metalloclusters. Chem. Rev. 114, 4063-4080. https://doi.org/10.1021/cr400463x
  33. Shah, V.K., Allen, J.R., Spangler, N.J., and Ludden, P.W. (1994). In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Purification and characterization of NifB cofactor, the product of NIFB protein. J. Biol. Chem. 269, 1154-1158. https://doi.org/10.1016/S0021-9258(17)42235-6
  34. Shi, R., Proteau, A., Villarroya, M., Moukadiri, I., Zhang, L., Trempe, J.F., Matte, A., Armengod, M.E., and Cygler, M. (2010). Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. PLoS Biol. 8, e1000354.
  35. Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S.L., Schleicher, E., Weber, S., Rees, D.C., and Einsle, O. (2011). Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940.
  36. Tanifuji, K., Jasniewski, A.J., Villarreal, D., Stiebritz, M.T., Lee, C.C., Wilcoxen, J., Okhi, Y., Chatterjee, R., Bogacz, I., Yano, J., et al. (2021). Tracing the incorporation of the "ninth sulfur" into the nitrogenase cofactor precursor with selenite and tellurite. Nat. Chem. 13, 1228-1234. https://doi.org/10.1038/s41557-021-00799-8
  37. Tanifuji, K., Lee, C.C., Sickerman, N.S., Tatsumi, K., Ohki, Y., Hu, Y., and Ribbe, M.W. (2018). Tracing the 'ninth sulfur' of the nitrogenase cofactor via a semi-synthetic approach. Nat. Chem. 10, 568-572. https://doi.org/10.1038/s41557-018-0029-4
  38. Wiig, J.A., Hu, Y., Chung Lee, C., and Ribbe, M.W. (2012). Radical SAM-dependent carbon insertion into the nitrogenase M-cluster. Science 337, 1672-1675. https://doi.org/10.1126/science.1224603
  39. Wiig, J.A., Hu, Y., and Ribbe, M.W. (2011). NifEN-B complex of Azotobacter vinelandii is fully functional in nitrogenase FeMo cofactor assembly. Proc. Natl. Acad. Sci. U. S. A. 108, 8623-8627. https://doi.org/10.1073/pnas.1102773108
  40. Wiig, J.A., Hu, Y., and Ribbe, M.W. (2015). Refining the pathway of carbide insertion into the nitrogenase M-cluster. Nat. Commun. 6, 8034.
  41. Wilcoxen, J., Arragain, S., Scandurra, A.A., Jimenez-Vicente, E., Echavarri-Erasun, C., Pollmann, S., Britt, R.D., and Rubio, L.M. (2016). Electron paramagnetic resonance characterization of three ironsulfur clusters present in the nitrogenase cofactor maturase NifB from Methanocaldococcus infernus. J. Am. Chem. Soc. 138, 7468-7471. https://doi.org/10.1021/jacs.6b03329
  42. Yoshizawa, J.M., Blank, M.A., Fay, A.W., Lee, C.C., Wiig, J.A., Hu, Y., Hodgson, K.O., Hedman, B., and Ribbe, M.W. (2009). Optimization of FeMoco maturation on NifEN. J. Am. Chem. Soc. 131, 9321-9325. https://doi.org/10.1021/ja9035225
  43. Yuvaniyama, P., Agar, J.N., Cash, V.L., Johnson, M.K., and Dean, D.R. (2000). NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. U. S. A. 97, 599-604. https://doi.org/10.1073/pnas.97.2.599
  44. Zhao, D., Curatti, L., and Rubio, L.M. (2007). Evidence for nifU and nifS participation in the biosynthesis of the iron-molybdenum cofactor of nitrogenase. J. Biol. Chem. 282, 37016-37025. https://doi.org/10.1074/jbc.M708097200