• Title/Summary/Keyword: Fe-Al

Search Result 2,722, Processing Time 0.028 seconds

The effect on small Al addition of the melt-spun Nd-Fe-C magnent (비정질 Nd-Fe-C 자석에 미치는 Al 첨가의 영향)

  • 조대형
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.995-999
    • /
    • 1997
  • For melt-spun Fe-Nd-C alloy variation of phase development and magnetic properties with the variety of small Al addition was investigated. As the amount of Al addition increased the amorphization of Fe$_{14}$/Nd$_{2}$/C or $\alpha$-Fe was retarded and the residual Fe$_{14}$/Nd$_{2}$/C or $\alpha$-Fe did not eliminated after heat treatment resulting in poor coercivities of the ribbons. The grain size of Fe$_{14}$/Nd$_{2}$/C increased with the increase of Al addition and the abnormal grain was often found out in the ribbon heat treated for more then 10 min. The enhancement of coercivity was the highest with the addition of 0.5at%Al. As the amount of Al addition increase the coercivities dropped rapidly. The highest coercivity obtained so far is 13.9kOe which about 16% higher than that(11.2kOe) obtained from the Al-free specimen.

  • PDF

Microstructures and Mechnical Properties of Ni-Al-Fe Ternary Alloys (Ni-Al-Fe 3 원계합금의 미세조직 및 기계적 특성)

  • Choi, Dap-Chun;Bae, Dae-Sung
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.356-365
    • /
    • 2004
  • Mechanical properties and microstructures of the Ni-AI-Fe and Ni-AI-Fe-(B, Zr) alloys which containing $10{\sim}30at$.%Fe, 0.1at.%B and/or 0.1at.%Zr have been investigated. The experimental results showed that the microstructures of Ni25Al were changed from a single phase ${\gamma}$ to dual phase ${\gamma}$ and ${\beta}$ by addition of 27at.%Fe. Ni45Al, however, kept the single ${\beta}$ phase even though Fe was added upto 30at.%. The hardness of Ni25Al were increased from $H_RB$ 70 to $H_RC$ 39 by addition of 27at.%Fe. In the case of Ni45Al which have $H_RC$ 37, the hardness was decreased by lOat.%Fe addition, but increased with 30at.%Fe. The yield strength and ultimate compressive strength in the compressive test have showed a similar trend with the hardness change. The strain to fracture was 14% at maximum and achieved in Ni25Al-27at.%Fe and Ni25Al-27at.%Fe-0.1 at.%B alloys. The Ni45Al showed a relatively low strain to fracture as 4%. The impact absorption energy of Ni25Al increased from 0.74 kg-m to 1.81 kg-m by addition of 27at.%Fe. In case of Ni45Al, the addition of lOat.%Fe and lOat.%Fe with small amounts of Band Zr did not change significantly the impact absorption energy of 0.60 kg-m, whereas the addition of 30at.%Fe with small amounts of B and Zr increased it slightly. In fracture tests, both of two basic materials showed the same intergranular fracture but by adding Fe it changed to the cleavage fracture mode or co-existing of cleavage and intergranular fractures.

Corrosion characterization of Fe-aluminide alloys with various sulphuric acid solution ($H_2SO_4$ 수용액 변화에 따른 철 알루미나이드 합금의 부식특성)

  • Lee, B.W.;Choi, H.L.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 2006
  • Corrosion characterization of Fe-XAl-0.3Y(X=5, 10, 14 wt%) alloys in $0.1{\sim}1N$ sulphuric acid at room temperature was studied using potentiodynamic techniques. The morphology and components of corrosion products on surface of Fe-aluminide alloys were investigated using SEM/EDX, XRD. The potentiodynamic polarization curve of alloys exhibited typical active, passive, transpassive behaviour. Corrosion potential($E_{corr}$) and corrosion current density($I_{corr}$) values of Fe-XAl-0.3Y alloys followed linear rate law. $E_{corr}$ of 10Al alloy and 14Al alloy was ten times lower than 5Al alloy. Icorr of 14Al alloy was five times lower than 5Al alloy. The passive film on the surface of Fe-5Al-0.3Y alloy was formed iron oxide. Fe-10Al-0.3Y and Fe-14Al-0.3Y alloys passive films were aluminium oxide. especially, Fe-14Al-0.3Y alloy showed good corrosion resistance in $0.1{\sim}1N$ sulphuric acid. This is attributed to the forming of protective $Al_2O_3$ oxide on the surface of Fe-14Al-0.3Y alloy.

  • PDF

Effect of Trace Metallic Additives of Al-Fe-X on Microstructure and Properties of Zn Electrodeposits (아연도금층의 조직 및 물성에 미치는 미량금속원소(Al-Fe-X)의 복합첨가의 영향(I))

  • 예길촌;김대영;서경훈;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.444-454
    • /
    • 2003
  • The effect of trace metallic additives of Al-Fe-X on microstructure, glossiness and hardness of Zn electrodeposits was investigated by using sulfate bath. The preferred orientation of Zn deposits with Al-Fe additives was (10 l)(l:3,4,2), while that of Zn deposits with Al-Fe-X(Ni,Co) additives was either (002) or (002)+(103)ㆍ(104) mixed orientation. The preferred orientation of Zn deposits with Al-Fe-Cr additives changed from (002)+(10 l) to (10 l) orientation with increasing amount of Al additive. The surface morphology of the Zn deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposits with Al-Fe additives increased in comparison with that of pure Zn deposit. That of the Zn deposits with Al-Fe-X additives was related to the morphology of the deposits and changed according to type of additives. The hardness of Zn deposits with Al-Fe-X(Ni,Co,Cr) additives was noticeably higher than that of Zn deposits with Al-Fe additives.

Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds (Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.

Synthesis of $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powder by mechanical alloying (기계적합금화에 의한 $Fe/Al_2O_3$$Fe/TiO_2$계 나노복합분말의 제조)

  • Lee, Seong-Hee;Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.202-207
    • /
    • 2009
  • Nanocomposite formation of metal-metal oxide systems by mechanical alloying (MA) has been investigated at room temperature. The systems we chose are the $Fe_3O_4$-M (M = AI, Ti), where pure metals are used as reducing agent. It is found that $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powders in which $Al_2O_3$ and $TiO_2$ are dispersed in ${\alpha}$-Fe matrix with nano-sized grains are obtained by MA of $Fe_3O_4$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the shorter MA time for the nanocomposite formation in $Fe/Al_2O_3$ is due to a large negative heat associated with the chemical reduction of magnetite by aluminum. X-ray diffraction results show that the average grain size of ${\alpha}$-Fe in $Fe/TiO_2$ nanocomposite powders is in the range of 30 nm. The change in magnetic properties also reflects the details of the solid-state reduction of magnetite by pure metals during MA.

A Mossbauer Study on Al-Ferrite (Al-Ferrite의 Mossbauer 분광학적 연구)

  • 이충섭;주한식;이찬영;서정철
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.198-202
    • /
    • 1998
  • We have studied $Al_xFe_{3-x}O_4$ produced by direct composition method using X-ray diffraction and Mssbauer spectroscopy. The cation distribution for $Al_xFe_{3-x}O_4$ was determined by the ratio of sub-spectra absorption area. The charge state of Fe atoms in octahedral site(B-site) is $Fe^{2.5+}$ based on electron hopping, $Fe^{2+}$$(Fe^{3+},Al^{3+})$ without dependency of substituted Al amounts.

  • PDF

Effects of Sr Additions on the Interfacial Reaction Layers Formed between Liquid Al-Si-Cu Alloy and Cast Iron

  • Kyoung-Min Min;Je-Sik Shin;Jeong-Min Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.353-359
    • /
    • 2023
  • This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.

Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel (Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향)

  • Jung, Byung Hun;Kong, Jong Pan;Kang, Chung Yun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Magnetostriction and Magnetoelastic Propwrties of Amorphous Fe-B-Al Alloys (Fe-B-Al계 비정질합금의 자왜 및 자기탄성효과)

  • 조용수;김윤배;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.135-138
    • /
    • 1993
  • Saturation rnagnetostriction and rnagnetoelastic properties of amorphous $Fe_{82}B_{18-x}Al_{x}$ and $Fe_{80}B_{20-x}Al_{x}$ alloys have been studied. Saturation magnetostriction of the alloys has increased according to the increase of AI content. The amorphous $Fe_{82}B_{14}Al_{4}$ alloy shows the highest saturation magnetostriction of 45 ppm among the alloy systems. The ratio of maximum magnetic induction change to tensile stress of this alloy is about $0.026\;T.mm^{2}/N$, and it is considered to be applicable for a high resolution mechanical sensor.

  • PDF