• Title/Summary/Keyword: Fe based intermetallic compounds

Search Result 17, Processing Time 0.022 seconds

Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca ((Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과)

  • Hwang, Y.J.;Kim, G.Y.;Kim, K.S.;Kim, Shae K.;Yoon, Y.O.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.

X-Ray Absorption Spectroscopy: A Complementary Tool for Structural and Electronic Characterization of Solids

  • Jean Etourneau
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.5-21
    • /
    • 1998
  • The purpose of this paper is to show that X-ray absorption spectroscopy (XANES and EXAFS) is a powerful technique for characterizing both crystalline and amorphous solids from structural (local order) and electronic point of view. The principle of this technique is briefly described by showing the main factors which must be considered for recording and fitting the experimental results. Some non-trivial examples have been selected for demonstrating that XAS spectroscopy is the only technique for bringing a definitive answer as for example: the determination of the local distortion of the $NiO_6$ octahedra in the $Li_{1-z}Ni_{1+z}O_2$ layered oxides and the evidence of the presence of copper pairs in the NASICON-type phosphate $CuZr_2 (PO_4)_3$. Are also reported some significant examples for which XAS spectroscopy is decisive with other characterization methods as (i) Raman spectroscopy for glasses (ii) Mossbauer spectroscopy for $LiNi_{1+z-t}Fe_To_2$ oxides (iii) magnetic measurements for Ce-based intermetallic compounds.

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Changes of Microstructures and Mechanical Properties of Recycled AC2B Alloy Chip Fabricated by Solution Heat Treatment (재활용 절삭칩으로 제조된 AC2B 합금의 용체화 열처리에 따른 미세조직 및 기계적특성 변화)

  • Kim, Dong-Hyuk;Yoon, Jong-Cheon;Choi, Chang-Young;Choi, Si-Geun;Hong, Myoung-Pyo;Shin, Sang-Yoon;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.38 no.2
    • /
    • pp.32-40
    • /
    • 2018
  • Changes in the microstructures and mechanical properties of an AC2B alloy through solution heat treatment were investigated using recycled AC2B cutting chips as raw material. The as-cast microstructure of the AC2B alloy comprised ${\alpha}$-Al, $Al_2Cu$, and coarse needle-shaped phases considered to be eutectic Si and an Al-Fe-Si based intermetallic compound. After solution heat treatments at $505^{\circ}C$ for 1 h and 6 h, the samples showed complete dissolution of $Al_2Cu$ and relatively fine distribution of intermetallic compounds. Hardness test results showed that the hardness rapidly increased after the solution heat treatment for 1 h by solid solution hardening, and the increase of hardness exhibited a plateau from 1 h to 6 h. The results of the hardness and tensile tests showed that there was no visible difference in the effect of 1 h and 6 h solid solution treatment.

Effect of Tungsten Contents and Heat Treatment on the Microstructures and Mechanical Properties of Hastelloy C-276 Alloy Investment Castings (정밀주조 Hastelloy C-276 합금의 미세조직과 기계적 성질에 미치는 W 함량과 열처리의 영향)

  • Yoo, Byung-Ki;Park, Heung-Il;Bae, Cha-Hurn;Kim, Sung-Gyoo;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.37 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • The effects of W content and heat treatment on the microstructure and mechanical properties of Hastelloy C-276 alloy investment castings were discussed. As the W content was increased, dendritic microstructure was refined and network type precipitate formed during solidification was distributed on the dendritic grain boundaries. Cr, Fe and Mn were highly segregated in the Ni-based dendrite matrix, and Mo, W, C and Si were in the precipitates. Due to the heat treatment, fine granular and flake precipitates were newly formed in the matrix, and unresolved network type precipitates remained on the grain boundary. The network type precipitates and the granular and flake precipitates formed by heat treatment were confirmed to be ${\mu}$ phase intermetallic compounds with similar compositions. Due to the increase of the W content and the heat treatment, hardness and tensile strength were significantly increased. However, tensile strength after aging treatment was decreased with the W content. These results can be explained in that brittle fracturing by the unresolved network type precipitates dispersed in the grain boundary was predominant over ductile fracturing by the dimple ruptures originating from the fine granular precipitates in the matrix.

Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels (1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

Corrosion resistance at high temperature condition of Cr Films Formed on hot-dip Al-Si plated steel sheet (용융Al-Si도금 강재에 형성한 Cr 막의 고온 환경 중 내식특성)

  • Gang, Min-Ju;Lee, Seung-Hyo;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.448-459
    • /
    • 2022
  • Generally, steel is the most commonly used in the industry because of good strength, processability and cost-effectiveness. Steel can be surface-treated such as coating or used as an alloy by adding elements such as Cr, Ni, Zr, and Al to increase corrosion resistance. However, even if steel is used in same environment corrosion resistance is sharply lowered when it is exposed to a high temperature for a fixed or extended period of time due to an overload or other factors. In particular, the use of hot-dip aluminized plated steel, which is used in high-temperature atmospheres, is increasing due to the surface Al2O3 oxide film. This steel necessitates an urgent solution as issues of corrosion resistance limitations often appear. It is an important issue that not only cause analysis but also the research for the surface treatment method that can be solved. Thus, in this study, Cr in which it is expected to be effective in corrosion resistance and heat resistance attempted to deposit on hot dip aluminized plated steel with PVD sputtering. And it was possible to present the surface treatment application of various types of industrial equipment exposed to high temperature and basic design guidelines for use by confirming the corrosion resistance of hot dip Al-Si plated steel with Cr film deposited at high temperature.