• Title/Summary/Keyword: Fe 제거

Search Result 715, Processing Time 0.025 seconds

Removal of Natural Organic Matter using Potassium ferrate(VI) (Potassium ferrate(VI)를 이용한 자연유기물질 제거)

  • Lim, Mi-Hee;Kim, Myoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1337-1344
    • /
    • 2007
  • In this research, we synthesized potassium ferrate(VI) acting as an oxidant, disinfectant, and coagulant, and used it to treat natural organic matter(NOM, HA and FA) in river water. The removal efficiencies obtained by $UV_{254}$ ranged from 20.7 to 73.6% for 10 mg/L HA and from 52.6 to 77.5% for 10 mg/L FA in Nakdong river sample as the ferrate dose varied from 2 to 46 mg/L(as Fe). However, the removal efficiencies by TOC analysis ranged from 0 to 20.3% for HA and from 0 to 26.6% for FA at the same ferrate doses. The removal efficiencies of NOM increased either with decreasing pH or with increasing temperature. The removal efficiency of HA by ferrate was comparable to those by traditional coagulants such as $Al_2(SO_4)_3{\cdot}18H_2O$, $FeSO_4{\cdot}7H_2O$, and FeO(OH). The reaction between ferrate and HA reached a steady state within 60 seconds, showing first-order with respect to the reaction time. The removal efficiencies of HA by traditional coagulants were improved by pretreatment of HA using a small amount of ferrate.

Acid-gas Removal Characteristics of Coal Gasification System using FeMgO catalyst (FeMgO 촉매를 이용한 산성가스 정제 특성)

  • Park, Jun-Sung;Hwang, Sang-Yeon;Lee, Seung-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.457-460
    • /
    • 2007
  • 석탄가스화 기술은 석탄을 고온/고압 조건에서 가스화 반응시켜 CO와 $H_2$가 주성분인 합성가스(syngas)로 전환시키는 기술이다. 그러나 가스화 반응으로 인해 합성가스 내에는 불순물인 $H_2S$, COS, $NH_3$ 등의 오염 물질이 발생하게 되며, 가스터빈의 부식, 촉매의 피독, 전극의 성능 저하 현상 등을 일으켜 효율을 저하시키게 된다. 이에 본 연구에서는 FeMgO 촉매를 제거용매로 사용하여 $H_2S$를 효과적으로 제거하기 위하여 Lab-scale 탈황 설비를 제작하였으며, 석탄 가스화 운전에 연계하여 합성가스 내 포함된 산성가스 정제 특성에 관한 연구를 진행하였다.

  • PDF

응집제를 이용한 금속폐광산 침출수와 주변오염지하수의 정화효율실험

  • 김인수;도원홍;이민희;김명진;조종수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.346-349
    • /
    • 2004
  • 국내에 자연 방치된 폐광산에 대한 문제가 대두되면서 폐광산 주변지역에 대한 산성광산폐수와 중금속 광산폐기물의 오염실태조사가 활발히 진행되고 있다. 본 연구는 폐광산의 유출수와 광산폐기물에 주변 오염지하수 내의 중금속 As, Cd, Pb, Fe, Mn, Zn, Cu에 대하여 무기 응집제의 첨가와 pH의 조절에 의한 제거효율을 .실내 배치실험을 통하여 규명하였다. 본 실험을 통하여 황산알루미늄(Al$_2$(SO$_4$)$_3$ㆍ13~14$H_2O$), 염화 제2철(FeCl$_3$ㆍ6$H_2O$), 황산 제2철(Fe$_2$(SO$_4$)$_3$ㆍ n$H_2O$)을 이용하여 오염수내 중금속을 90%이상 제거할 수 있었으며, 폐광산 침출수나 오염 지하수의 중금속 제거에 0.1 wt%의 응집제 첨가만으로 응집제를 이용한 화학적 처리 방법이 효과적으로 사용될 수 있을 것으로 판단되었다.

  • PDF

Iron-bearing Minerals in the Kaolin from Hadong-Sancheong Area (하동-산청 고령토 중의 함철광물 연구)

  • 김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.1-14
    • /
    • 1988
  • 최근 국내에서의 고령토의 다양한 공업적 이용추세는 다량의 고품위 고령토를 필요로 하게 되었다. 그러나 하동-산청지역의 고령토 광석은 저품위가 대부분인 반면 그 양은 막대하다. 고령토의 저품위 현상은 산화철광물과 함철 규산염광물등 고령토 이외의 광물들이 고령토 광석에 다량 함유된데 기여한다. 그릴제거, 자력분리 및 디티오나이트에 의한 침출등 종래의 정제 방법에 의하여 제작된 고령토 정광에는 아직도 상당량의 철분이 함유되어 있어서 정광의 품위가 높지 않다. 고령토 광석으로부터 분리해낸 순수한 할로이사이트는 평균 Fe2O3 0.4%를 함유하고 있으며 이 철분은 할로이사이트내에 구조철로 함유되어 있다. 고령토에 함유되어 있는 함철광물로는 산화광물(적철석, 자철석, 침철석, 티탄철석)과 규산염광물(감섬석, 버미큘라이트, 일라이트, 녹니석)이 있다. 종래의 정제방법으로는 대부분의 산화철광물들은 제거 되었지만 버미큘라이트(Fe2O3 0.9%)와 일라이트 (Fe2O3 1.2%)는 고령토 정광에 계속 남아 있어서 저품위 정광이 되고 있다. 버미큘라이트와 일라이트의 함유가 주로 고령토 정광의 저품위의 원인이 되고 있기 때문에 고품위 고령토 정광을 생산하기 위해서는 이들 두 광물을 제거해야 한다.

  • PDF

Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes (오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리)

  • Jun, Jun Chul;Kwon, Tae Ouk;Moon, Il Shik
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.298-303
    • /
    • 2007
  • Several combinations of ozone based advanced oxidation processes were tested for the treatment of red water (RW) containing recalcitrant chemical pollutants produced from 2,4,6-trinitrotoluene (TNT) manufacturing process. $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested for the treatment of RW. The order of organic and color removal efficiency was found to be : $O_3{\leq}UV/O_3$ < $UV/O_3/H_2O_2$ < $UV/O_3/H_2O_2/Fe^{2+}$. The optimum conditions for the removal of organic and color in the $UV/O_3/H_2O_2/Fe^{2+}$ process were 0.053 g/min of ozone flow rate, 10 mM of $H_2O_2$ concentration and 0.1 mM of $FeSO_4$ concentration. Organic and color removal efficiencies were 96 and 100 % respectively in the $UV/O_3/H_2O_2/Fe^{2+}$ process. tert-butyl alcohol (t-buOH) was used as the hydroxyl radical scavenger. Enhancement of hydroxyl radical production was achieved by the combination of ozone with several oxidants such as UV, $H_2O_2$, $Fe^{2+}$.

Reuse of Hydrogen Sulfide by Ferric Chelate Reaction of Food Waste Anaerobic Digestion Gas, Sulfur Recovery and its Economic Evaluation (킬레이트 착화학반응에 의한 음식물폐기물 혐기소화가스 중 황화수소의 제거와 황회수 및 경제성평가)

  • Park, Young G.;Yang, Youngsun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.367-374
    • /
    • 2014
  • Several experiments have been done to investigate the removal of hydrogen sulfide ($H_2S$) synthetic gas from biogas streams by means of chemical absorption and chemical reaction with 0.1-1 M Fe/EDTA solution. The roles of Fe/EDTA were studied to enhance the removal efficiency of hydrogen sulfide because of oxidizing by chelate. The motivation of this investigation is first to explore the feasibility of enhancing the toxic gas treatment in the biogas facility. The biogas purification strategy affords many advantages. For instance, the process can be performed under mild environmental conditions and at low temperature, and it removes hydrogen sulfide selectively. The end product of separation is elemental sulfur, which is a stable material that can be easily disposed with minor potential for further pollution. As the Fe-EDTA concentration increased, the conversion rate of hydrogen sulfide increased because of the high stability of Fe-EDTA complex. pH as an important environmental factor was 9.0 for the stability of chemical complex in the oxidation of hydrogen sulfide.

The Effects of Reductants on the Behaviors of Fe Selective Chlorination using an Ilmenite Ore (일메나이트 광의 Fe 선택염화 거동에 미치는 환원제의 영향에 관한 연구)

  • Son, Yongik;Sohn, Ho-Sang;Jung, Jae-Young
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.30-38
    • /
    • 2018
  • In this study, the behaviors of Fe selective chlorination in ilmenite ore by using PVC or $CO-Cl_2$ gas mixture as reducing agents under the condition of 1173 K, for 60 minutes were investigated. The weight loss ratio was 28% when PVC was applied as the reducing agent. The condensate formed at the outlet of reaction tube was identified as $FeCl_2$ by X-ray diffraction analysis. From these results, it was observed that iron in ilmenite ore reacted with HCl gas and Fe was selectively removed in the form $FeCl_2$. However, when $CO-Cl_2$ gas mixture was used as a reducing agent, the weight reduction ratio was 54%, and the condensate formed at the outlet of reaction tube after the experiment was estimated to be $FeCl_3$. It was observed that the ilmenite ore reacted with the $CO-Cl_2$ gas mixture and was simultaneously removed in the form of $FeCl_3$ and $TiCl_4$. However, the results of X-ray diffraction of ilmenite ore after the reaction showed that Fe was almost removed.

Selective Removal of Odorants in Natural Gas by Adsorption on Metal-containing Beta Zeolite Adsorbents (금속함유 베타 제올라이트 흡착제 상에서 LNG가스 내에 부취된 황화합물의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.459-466
    • /
    • 2007
  • In this study, H-type beta zeolites (BEA) having various metals were used as the adsorbent for the removal of sulfur containing odorants. The different adsorbents containing single or bimetals were utilized to investigate the performance in the individual adsorption of TBM and THT odorants or in the competitive adsorption between them by using a continuous adsorptive bed system. The result shows that the pure H-type BEA zeolite exhibited the highest adsorption capacity for TBM compound, but the higher amount of THT was removed and adsorbed on a HBEA adsorbent having Fe, Pd metal and ZnO oxide. In the case of bimetal containing adsorbents, Cu-Zn/HBEA and Fe-Mo/HBEA showed a higher adsorption capacity for TBM.

The Thermal Behavior and Removal of Chloride in EAF Dust (EAF Dust중 염화물의 거동과 제거에 관한 연구)

  • 김영환;김종학;고인용;문석민;이대열;신형기;오재현
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 1997
  • This study was carried out to find the existing forms of chlorlnc in EM dust and to understand the valaliliratian behavior and the removal of chlorine from EAF dust with lemperalure and heating almosphere The chemical compositions of dust A are 27.3%Fe. 21.8%3Zn, 3 15%Pb, 3 51%C1 and that of dust B BE 33.92%Fe, 15.94%Zn, 2.73% Pb, 3.98%Cl. The XRD analysis and water leaching test shows that chlorlne in EM dust exist mainly as NaCI, KCI, Pb (0H)Cl. Above 99% of chlorine was volatilized when dust was hentcd in alr atmosphere at 1100$^{\circ}$C h r 1 hour and that was 96% when heated in reduction atmosnherc at 1100$^{\circ}$C for 1 hour.

  • PDF

Sorption of Ni(II), Cu(II) and Fe(III) ions from Aqueous Solutions Using Activated Carbon (활성탄소를 이용한 수용액으로부터의 Ni(II), Cu(II) 그리고 Fe(III) 이온의 흡착)

  • Hanafi, H.A.;Hassan, H.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II), Cu(II) and Fe(III) ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich and Langmuir and the isotherm constants were evaluated, equilibrium time of the different three metal ions were determined. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.