DOI QR코드

DOI QR Code

The Effects of Reductants on the Behaviors of Fe Selective Chlorination using an Ilmenite Ore

일메나이트 광의 Fe 선택염화 거동에 미치는 환원제의 영향에 관한 연구

  • Son, Yongik (Automobile Parts & Materials Research Center, Kyungpook National University) ;
  • Sohn, Ho-Sang (Automobile Parts & Materials Research Center, Kyungpook National University) ;
  • Jung, Jae-Young (Automobile Parts & Materials Research Center, Kyungpook National University)
  • 손용익 (경북대학교 자동차부품소재연구소) ;
  • 손호상 (경북대학교 자동차부품소재연구소) ;
  • 정재영 (경북대학교 자동차부품소재연구소)
  • Received : 2018.03.07
  • Accepted : 2018.04.19
  • Published : 2018.06.30

Abstract

In this study, the behaviors of Fe selective chlorination in ilmenite ore by using PVC or $CO-Cl_2$ gas mixture as reducing agents under the condition of 1173 K, for 60 minutes were investigated. The weight loss ratio was 28% when PVC was applied as the reducing agent. The condensate formed at the outlet of reaction tube was identified as $FeCl_2$ by X-ray diffraction analysis. From these results, it was observed that iron in ilmenite ore reacted with HCl gas and Fe was selectively removed in the form $FeCl_2$. However, when $CO-Cl_2$ gas mixture was used as a reducing agent, the weight reduction ratio was 54%, and the condensate formed at the outlet of reaction tube after the experiment was estimated to be $FeCl_3$. It was observed that the ilmenite ore reacted with the $CO-Cl_2$ gas mixture and was simultaneously removed in the form of $FeCl_3$ and $TiCl_4$. However, the results of X-ray diffraction of ilmenite ore after the reaction showed that Fe was almost removed.

본 연구는 1173 K에서 60분 동안 유지하는 조건하에 PVC 또는 $CO-Cl_2$ 혼합가스를 각각 사용하여 환원제에 따른 ilmenite ore의 Fe 선택염화 거동에 대해 조사하였다. 환원제로 PVC를 사용한 경우, 무게 감소율은 28%로 관찰되었다. 그리고 반응관 출구부위에 생성된 응축물은 X-선 회절 분석결과 $FeCl_2$로 확인되었다. 이러한 결과로부터 ilmenite ore 내의 철은 HCl 가스와 반응하였고 $FeCl_2$ 형태로 Fe만 선택적으로 제거된 것으로 관찰하였다. 그러나 환원제로 $CO-Cl_2$ 혼합가스를 사용한 경우, 무게 감소 비율은 54%로 관찰되었으며, 실험 종료 후 반응관 출구부위에 생성된 응축물은 $FeCl_3$로 추측할 수 있었다. 이를 통해 ilmenite ore는 $CO-Cl_2$ 혼합가스와 반응하여 $FeCl_3$$TiCl_4$ 반응물 형태로 동시에 제거되는 것으로 관찰되었다. 다만 반응후 ilmenite ore의 X선 회절 결과에서 Fe는 대부분 제거되었음을 보여주었다.

Keywords

References

  1. Guo-Hua Zhang, Kuo-Chin Chou, and Hai-Lei Zhao, 2012 : "Reduction Kinetics of $FeTiO_3$ Powder by Hydrogen", ISIJ International 52, pp.1986-1989. https://doi.org/10.2355/isijinternational.52.1986
  2. Ho-Sang Sohn and Jae-Young Jung, 2016 : "Current Status of Titanium Smelting Technology", J. of Korean Inst. of Resources Recycling, 25(4), pp.68-79. https://doi.org/10.7844/KIRR.2016.25.4.68
  3. Ho-Sang Sohn and Jae-Young Jung, 2016 : "Current Status of Ilmenite Beneficiation Technology for Production of $TiO_2$", J. of Korean Inst. of Resources Recycling, 25(5), pp.64-74. https://doi.org/10.7844/kirr.2016.25.5.64
  4. M. Mozammel, S. K. Sadrnezhaad, A. Khoshnevisan, and H. Youzbashizadeh, 2013 : "Kinetics and reaction mechanism of isothermal oxidation of Iranian ilmenite concentrate powder", J. Therm. Anal. Calorim., 112, pp.781-789. https://doi.org/10.1007/s10973-012-2639-1
  5. Sang-Soon Lee, 1994 : "Beneficiation of titaniferrous magnetite by the chlorination in a fluidized bed reactor", M.S.Thesis, Dankook University, (1994).
  6. Yongik Son, Rie Ring, and Ho-Sang Sohn, 2016 : "Removal of Iron from Ilmenite through Selective Chlorination Using PVC", J. of Korean Inst. of Resources Recycling, 25(3), pp.74-81. https://doi.org/10.7844/kirr.2016.25.3.74
  7. Vasquez, R. and Molina, A. 2008 : "Leaching of ilmenite and pre-oxidized ilmenite in hydrochloric acid to obtain high grade titanium dioxide", 17th Int'l Conference on Metallurgy and Materials, Metal 2008 Hradec nad Moravici, Czech Republic, 13-15 May 2008.
  8. Thomas S. Mackey, 1974 : "Acid Leaching of Ilmenite into Synthetic Rutile, Ind. Eng. Chem.", Prod. Res. Develop., 13(1), pp.9-18. https://doi.org/10.1021/i360049a003
  9. Tai Ouk Kang and Jong Kyu Yoon, 1978 : "Reduction Kinetics of Synthetic Ilmenite by Graphite", J. Kor. Inst. Metals, 16(2), pp.80-89.
  10. Eungyeul Park and Oleg Ostrovski, 2003 : "Reduction of Titania-Ferrous Ore by Carbon Monoxide", ISIJ International, 43(9), pp.1316-1325. https://doi.org/10.2355/isijinternational.43.1316
  11. Eungyeul Park and Oleg Ostrovski, 2004 : "Reduction of Titania-Ferrous Ore by Hydrogen", ISIJ International 44(6), pp.999-1005. https://doi.org/10.2355/isijinternational.44.999
  12. K. Borowice, A. E. Grau, M. Gueguin, and J. F. Turgeon, 1998 : "Method to upgrade titania slag and reslting product", US Patent 5,830,420.
  13. Arun S. AthaVale and Vishwanath A. Altekar, 1971 : "Kinetics of Selective Chlorination of Ilmenite Using Hydrogen Chloride in a Fluidized Bed", Ind. Eng. Chem. Process Des. Develop., 10(4), pp.523-530. https://doi.org/10.1021/i260040a017
  14. A. Fuwa, E. Kimura, and S. Fukushima, 1978 : "Kinetics of Iron Chlorination of Roasted Ilimenite Ore, $Fe_2TiO_5$ in a Fluidized-Bed Reactor", Metall. Trans. B, 9B, pp.643-652.
  15. James P. Bonsack, 1992 : "Entrained-Flow Chlorination of Ilmenite to Produce Titanium Tetrachloride and Metallic Iron", Metall. Trans. B, 23B, pp.261-266.
  16. J. S. J. Van Deventer, 1988 : "Kinetics of the Selective Chlorination of Ilmenite", Thermochemica Acta, 124, pp.205-215. https://doi.org/10.1016/0040-6031(88)87023-0
  17. T. S. Yun and Y. Paik, 1976 : Kinetics of Chlorination of Titaniferous Magnetite-Selective Chlorination Rate of Ilmenite, J. Kor. Inst. Metals, 14(3), pp.74-80.
  18. K. I. Rhee and H. Y. Sohn, 1990 : "The Selective Chlorination of Iron from Iimenite Ore by CO-$Cl_2$ Mixtures: Part I. Intrinsic Kinetics", Metall. Trans. B, 21B, pp.321-330.
  19. C. M. Lakshmanan, H. E. Hoelscher, and B. Chennakesavan, 1965 : "The kinetics of ilmenite beneficiation in a fluidized chlorinator", Chem. Eng. Sci., 20, pp.1107-1113. https://doi.org/10.1016/0009-2509(65)80114-2
  20. J. S. Kang and T. H. Okabe, 2013 : "Removal of Iron from Titanium Ore through Selective Chlorination Using Magnesium Chloride", Materials Transactions, 54(8), pp.1444-1453. https://doi.org/10.2320/matertrans.M-M2013810
  21. J. S. Kang and T. H. Okabe, 2013 : "Upgrading Titanium Ore Through Selective Chlorination Using Calcium Chloride", Metall. Trans. B, 44B, pp.516-527.
  22. J. S. Kang and T. H. Okabe, 2014 : "Production of Titanium Dioxide Directly from Titanium Ore through Selective Chlorination Using Titanium Tetrachloride", Materials Trans., 55(3), pp.591-598. https://doi.org/10.2320/matertrans.M-M2013843
  23. GyeSeung Lee and YoungJun Song, 2003 : "Study on the Synchronous Recycling of EAF Dust and Waste PVC", J. Kor. Inst. of Resources Recycling, 12(6), pp.47-56.
  24. Ho-Sang Sohn, 2012 : Thermodynamics of metallurgy, pp.251-266, Kyungpook National University Press, Daegu, S.Korea.
  25. O. Kubaschewski and C. B. Alcock, 1979 : Metallurgical Thermochemistry, 5rd Edition, Pergamon Press, Oxford, UK.
  26. Robert D. Bach, David S. Shobe, H. Bernhard Schlegel, and Christopher J. Nagel, 1996 : "Thermochemistry of Iron Chlorides and Their Positive and Negative Ions", J. Phys. Chem., 100, pp.8770-8776. https://doi.org/10.1021/jp953687w
  27. Nam Hwi Hur, 2017 : Private Communication, Sogang University, Seoul, S.Korea.