• Title/Summary/Keyword: Fe/Ni layer

Search Result 337, Processing Time 0.03 seconds

Magnetization Reversal of Exchange-biased Bilayers and Trilayers Probed using Front and Back LT-MOKE

  • Kim, Ki-Yeon;Kim, Ji-Wan;Choi, Hyeok-Cheol;You, Chun-Yeol;Shin, Sung-Chul;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Magneto-optical Kerr effect (MOKE) magnetometry was used to investigate magnetization reversal dynamics in 30-nm NiFe/15-nm FeMn, 15-nm FeMn/30-nm CoFe bilayers, and 30-nm NiFe/(2,10)-nm FeMn/30-nm CoFe trilayers. The in-plane magnetization components of each ferromagnetic layer, both parallel and perpendicular to the applied field, were separately determined by measuring the longitudinal and transverse MOKE hysteresis loops from both the front and back sides of the film for an oblique incident s-polarized beam. The magnetization of the FeMn/CoFe bilayer was reversed abruptly and symmetrically through nucleation and domain wall propagation, while that of the NiFe/FeMn bilayer was reversed asymmetrically with a dominant rotation. In the NiFe/FeMn/CoFe trilayers, the magnetic reversal of the two ferromagnetic layers proceeded via nucleation and domain wall propagation for 2-nm FeMn, but via asymmetric rotation for 10-nm FeMn. The exchange-biased ferromagnetic layers showed the magnetization reversal along the same path in the film plane for the decreasing and increasing field branches from transverse MOKE hysteresis loops, which can be qualitatively explained by the theoretical model of the exchange-biased ferromagnetic/antiferromagnetic systems.

Analysis of Magnetic Multi-layers by RBS and PIXE (후방산란법(RBS)/양성자 여기 X-선 방출법(PIXE)을 이용한 다층자성박막의 두께 및 조성 정량분석)

  • 송종한;김태곤;전기영;황정남;신윤하;김영만;장성호;김광윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.272-277
    • /
    • 2001
  • A spin valve structure of Ta/NiFe/CoFe/Cu/CoFe/Ru/CoFe/FeMn/Ta which has a synthetic antiferromagnet (CoFe/Ru/CoFe), was fabricated by using a magnetron sputtering system. The thickness and composition of magnetic free and pinned layers affect the magnetic properties such as exchange interaction strength of each layer and so on. Even though Rutherford Backscattering Spectrometry (RBS) has advantages of quantitative and non-destructive analysis, it is almost impossible to determine the thickness and composition of magnetic thin films using lBS because of its poor mass resolution for a higher atom number (Z>20). In this study, quantitative analysis of the element composition and thickness for the spin valve sample was performed by combining both Proton Induced X-ray Emission Spectrometry (PIXE), which is one of element specific analysis techniques, and grazing-exit RBS with a highly improved depth resolution and absolute quantitative analysis. For the quantitative analysis, standardization of PIXE was carried out with NiFe, CoFe, and FeMn layers, which are one of constituent layers of spin valve films. Through PIXE standardization and the aid of PHE experimental results of the spin valve sample, ire overlapped signal in a grazing-exit RBS spectrum were successfully resolved and the thickness of the Ru layer was determined with a resolution of ∼1 .

  • PDF

Effect of Ni Bond Coat on Adhesive Properties of Fe Coating Thermal Sprayed on Al Substrate (Ni 본드코팅이 Al 기지에 고온 용사 코팅된 Fe 코팅층의 접합특성에 미치는 영향)

  • Kwon, Eui-Pyo;Kim, Dae-Young;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.542-548
    • /
    • 2016
  • The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel (Ni-Cr계 내열주강의 천이액상 접합)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.

Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy (Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

Giant Magnetoresistance Behavior and the Effect of Ferromagnetic Layer on the Co-Ag Nano-granular Alloy Films (Co - Ag 합금박막의 거대자기저항 및 강자성 상하지층의 효과)

  • 김용혁;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 1997
  • The magnetoresistance and the saturation field behavior of the Co-Ag nano granular films as a function of the composition and the ferromagnetic underlayer and overlayermaterials were investigated. The maximum magnetoresistance of 23% and the saturation field of 2.3 kOe at room temperature were obtained in the as-deposited 3000$\AA$ $Co_{30}Ag_{70}$ single alloy films. The magnetoresistance and the saturation field of 100$\AA$ $Co_{30}Ag-{70}$ alloy film were 3.65 % and 3.0 kOe respectively. Those of the sandwiched films with 200$\AA$ Fe were 3.3 % and 1.23 kOe respectively. The saturation field of the sandwiched alloy films could be reduced by the exchange coupling between the ferromagnetic layers and the alloy layer. The effective depth of the exchange coupling was approximately 150$\AA$ in each Fe layer. Among the Fe, Co, and FeNi, the most effective materials to reduce the saturation field of the sandwiched alloy films was Fe.

  • PDF

A Study on the Low Temperature Fracture Toughness of Ion-nitrided Ni-Cr-Mo Steel (이온 실화처리한 Ni-Cr-Mo강의 저온파괴인성에 관한 연구)

  • 오세욱;윤한기;문인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.101-112
    • /
    • 1987
  • Fracture toughness characterization in the transition region is examined for heat-treated and ionnitrided Ni-Cr-Mo steel. After heat treatment for the specimens of Ni-Cr-Mo steel, organizations of specimens-specimens which are heat-treated and ion-nitrided for 4 hours at 500 .deg. C and 5 torr in 25%N/dub 2/-75%H/sub 2/mixed gas-, hardness variety, and X-ray diffraction pattern of the ion-nitriding compound layer are observed. Fracture toughenss test of unloading compliance method were conducted over the regions from room trmperature to -70.deg. C. The compound layer was consisted of r'=Fe/sub 4/N phase and ion-nitrided layer's depth was 200mm from surface. The transition regions of heat-treated and ion-nitrided specimens were about -30.deg. C and -50.deg. C, respectively. The transition region of ion-nitrided specimens is estimated less than that of heat-treated one, and this is the effect of ion-nitriding.

  • PDF

Microscopic Domain Structures in NiO Exchange-coupled Films

  • Hwang, D.G.;Kim, J.K.;Kim, S.W.;Lee, S.S.;Dreyer, M.;Gomez, R.D.
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.94-97
    • /
    • 2002
  • The dependence on nickel oxide thickness and a ferromagnetic layer thickness in unidirectional and isotropic exchange-coupled NiO/NiFe(Fe) bilayer films was investigated by magnetic force microscopy to better understand the relation between magnetic domain structure and exchange biasing at microscopic length scales. As the NiO thickness increased, the domain structure of unidirectional biased films formed smaller and more complex in-plane domains. By contrast, for the isotropically coupled films, large domains generally formed with increasing NiO thickness including a cross type domain with out-of plane magnetization orientation. The density of the cross domain is proportional to exchange biasing field, and the fact that the domain mainly originated from the strongest exchange coupled region was confirmed by imaging in an applied external field during a magnetization cycle.