본 연구는 시멘트/Fe(II) 시스템의 TCE 분해 기작에 관한 것이다. 회분식 슬러리 실험을 통해 시멘트/Fe(II) 시스템 내에서 선별된 이온들의 거동을 조사하였다. 시멘트/Fe(II) 시스템에서 주입된 Fe(II)은 반응시간 12시간 이내에 대부분 고체상으로 흡착되었으며 Fe(II)와 함께 주입된 sulfate 역시 12시간 이내에 90% 정도 고체상으로 이동하였다. 시멘트/Fe(II) 시스템의 Fe(II)-Fe(III) (수)산화물 형성을 모사한 적철석/CaO/Fe(II) 시스템의 TCE 분해능 실험결과 시멘트/Fe(II)에 상응하는 분해속도를 보였다. 칼슘산화물은 시멘트 수화물의 주요 구성성분의 하나로서 시멘트 내에 60% 정도 함유되어 있으며 제한된 조건에서 반응성을 갖는 것으로 알려져 있다. 적철석은 시멘트에 포함되어 있는 철산화물을 모의한 것으로 선별실험을 통해 결정하였다. 적철석/CaO/Fe(II) 시스템 내에서의 Fe(II)과 sulfate의 초기 거동은 시멘트/Fe(II) 시스템과 거의 유사하게 나타났다. 적철석/CaO/Fe(II) 시스템을 이용한 TCE 분해 kinetic 실험결과와 선별된 이온들인 Fe(II)과 $SO_4^{2-}$의 초기 거동으로 볼 때 시스템 내에서 green rust와 같은 Fe(II)-Fe(III) 혼합 광물이 형성되는 것으로 판단된다. 따라서 시멘트/Fe(II) 시스템의 TCE 분해는 시멘트에 흡착된 Fe(II)이 반응성을 갖는 Fe(II)-Fe(III) (수)산화물로의 변환을 통한 기작을 갖는 것으로 판단된다.
철을 이용한 반응벽체 (permeable reactive barrier, PRBs) 기술은 유기 화합물로 오염된 지하수를 환원적 반응에 의해 정화시키는 공법이다. 벽체의 매질로 주로 사용되는 영가 철은 반응이 진행됨에 따라 점차 2가 및 3가 철로 산화되어 제거능이 점차 저감된다. 자연계에 존재하거나 동정된 철 환원 박테리아는 산화된 Fe(III)를 Fe(II)로 환원시키는 능력을 가지고 있으며 이와 같이 환원된 Fe(II)는 반응 표면적을 넓히고 다시 할로겐 유기 화합물을 환원적으로 제거할 수 있도록 한다. 본 연구는 철 환원 박테리아로 순수균인 Shewanella algae BrY에 의한 산화철의 환원 경향을 aqueous phase와 solid phase로 나누어 관찰하고 환원된 철이 TCE 제거에 미치는 영향을 iron(II,III) oxide와 iron(III) oxide를 대상으로 하여 파악하는 것을 목표로 하였다. 박테리아는 배지 내에 존재하는 Fe(III)를 우선적으로 사용하여 Fe(II)로 환원시켰으며 선택성은 떨어지지만 입자상의 산화철 표면에 존재하는 Fe(III)도 환원시켰다. 또한 동량의 산화철이 존재할 때 iron(II,III) oxide에 비해 박테리아가 전자수용체로 사용할 수 있는 Fe(III)가 풍부한 iron(III) oxide의 환원이 더 잘 일어남을 알 수 있었고, 환원된 Fe(II)는 박테리아 또는 다른 철 산화물과 침전을 형성하였으며 TCE와의 반응속도 및 제거 능력을 향상시키는 것으로 판단된다.
[ $N_2O_2$ ] 시프염기 리간드인 N,N'-bis(4-methoxysalicylidene) phenylendiamine(4-$CH_3O$-salphen)을 합성하였다. 분광광도법으로 4-$CH_3O$-salphen을 이용하여 수용액 중의 Fe(II)와 Fe(III)이온의 분리 정량실험을 위하여, 리간드 농도는 $4.0{\times}10^{-4}\;M$, DMF 용매와 물의 비율은 70/30(v/v), pH는 3.4~3.8 범위, 온도는 $55^{\circ}C$에서 1 시간 정도를 물 중탕하여 결과를 얻었다. 시료의 예비 산화 및 환원 전처리는 $5.0{\times}10^{-4}\;M$ 농도의 $H_2O_2$와 $NH_2OH{\cdot}HCl$을 사용하여 단일 원자가 상태의 시료를 만들어 사용하였다. 이때 Fe(II)와 Fe(III) 이온의 정량은 434 nm와 456 nm에서 흡광도를 측정하였다. 이상의 최적화된 실험조건을 이용하여 약수, 온천수, 바닷물 및 하수 처리장의 처리수를 채취하여 Fe(II)와 Fe(III) 이온을 각각 정량 분석한 결과는 측정 평균값이 표준 값에 대하여 2.00~6.90% 범위에서 잘 일치 하였고, 정량검출한계는 Fe(II)의 경우 27.9 ng/mL이었고, Fe(III)은 55.8 ng/mL이었다.
Fe(II) 또는 Fe(III)/picolinic acid 유도체로 구성된 착화합물을 이용하며 과산화수소에 의한 cyclohexane의 부분 산화반응을 수행하였다. Cyclohexanone과 cyclohexanol이 주된 생성물이었으며, one/ol비는 3~10이었다. Pyridine/acetic acid 혼합용매(부피비 2.5:1, pH 5.3)에서 가장 우수한 활성을 보였고, 반응온도는 $25{\sim}40^{\circ}C$가 최적이었다. Cyclohexyl hydroperoxide가 반응 중간체임을 확인하였고, adamantane의 부분 산화반응과 radical trap 첨가 실험의 결과로부터 반응은 대부분 non-radical 경로를 거쳐 진행됨을 알 수 있었다.
삼덕 Mo 광상 주변지질은 고생대 화전리층, 고운리층, 서창리층, 이원리층, 황강리층, 백악기 우백질 반상화강암 및 화강반암으로 구성된다. 이 광상은 서창리층 내에 발달된 NS 방향의 열극대를 따라 충진한 3개조의 석영맥으로 구성된 광상으로 석영맥의 맥폭은 0.05~0.3 m 정도로 팽축이 심하고 석영맥의 연장성은 약 400 m 정도이다. 석영맥은 괴상, 각력상 및 정동조직들이 관찰되며 모암변질로는 규화작용, 견운모화작용, 점토화작용 및 녹니석화작용 등이 관찰된다. 산출광물은 석영, 형석, 백색운모, 흑운모, 인회석, 모나자이트, 금홍석, 티탄철석, 휘수연석, 황동석, Fe-Mg-Mn 산화물 및 철 산화물 등이다. 이 광상의 백색운모는 석영맥과 모암에서 세립질에서 조립질로 산출되며 4가지 산출유형(I 유형: 석영, 휘수연석, 철 산화물 및 Fe-Mg-Mn 산화물과 함께 산출되는 것, II 유형: 석영, 철 산화물 및 Fe-Mg-Mn 산화물과 함께 산출되는 것, III 유형: 석영 및 흑운모와 함께 산출되는 것 및 IV 유형: 석영과 함께 산출되는 것)을 갖는다. 석영맥에서 산출되는 백색운모의 화학조성은$(K_{0.89-0.60}Na_{0.05-0.00}Ca_{0.01-0.00}Sr_{0.02-0.00})_{0.94-0.62}(Al_{1.54-1.12}Mg_{0.36-0.18}Fe_{0.26-0.09}Mn_{0.04-0.00}Ti_{0.02-0.00}Cr_{0.02-0.00}Zn_{0.01-0.00})_{1.91-1.72}(Si_{3.40-3.11}Al_{0.92-0.60})_{4.00}O_{10}(OH_{1.68-1.42}F_{0.58-0.32})_{2.00}$이나 I 유형의 백색운모는 나머지 유형의 백색운모보다 $SiO_2$ 및 MgO 함량은 낮고 FeO 함량은 높게 나타난다. 또한 이 광상의 백색운모의 화학조성 변화는 팬자이틱 또는 Tschermark 치환($(Al^{3+})^{VI}+(Al^{3+})^{IV}{\leftrightarrow}(Fe^{2+}$ 또는 $Mg^{2+})^{VI}+(Si^{4+})^{IV}$) 및 직접적인 $(Fe^{3+})^{VI}{\leftrightarrow}(Al^{3+})^{VI}$ 치환에 의해 일어났음을 알 수 있다.
산소가 고갈된 혐기성 환경의 유기물 분해 및 물질순환에서 철 환원반응의 생태/환경적 중요성에 대해 고찰하였다. 다양한 해양환경에서 유기물 분해 시 철 환원이 차지하는 중요성은 미약한 수준에서 거의 $100\%$에 이르기까지 그 범위가 극단적으로 다양하게 나타났다. 일반적으로 철 환원은 Fe(III)의 농도가 높은 곳에서 황산염 환원보다 중요한 유기물 분해 경로로 나타나, 유기물 분해에서 철 환원의 중요성은 철 환원세균이 이용 가능한 Fe(III)의 공급정도에 의해 결정되는 것으로 인식되었다. 산소공급이 미약한 연안혐기성 퇴적토 내에서 Fe(III)의 공급은: (1)조석에 의한 퇴적물 내 공극수의 교환(tidal flushing): (2)저서동물에 의한 생물교란: (3)식생의 유무에 따른 퇴적물의 산화/환원 상태의 변화 등에 의해 주로 영향을 받는 것으로 나타났다 철 환원세균에 의한 유기물 분해 및 다양한 금속원소의 전환기능을 이용한 특정 유기오염원과 금속오염원의 생물정화는 우리나라와 같이 부영양화된 연안생태환경의 개선 및 독성 유t무기 오염원의 생물정화 등 연안역의 환경친화적 관리가 절실히 요구되는 환경에서 생태/환경공학 분야의 유용한 해결수단으로 간주된다.
이 연구의 목적은 KURT(KAERI underground research tunnel) 지하수 내에 금속이온을 환원시키는 미생물의 존재 여부를 확인하고 배양하여, 이들의 활동에 따른 철과 망간 환원의 관찰과 환원물의 광물학적 특성을 연구함으로써, 금속환원미생물에 의한 산화상태로 존재하는 철과 망간의 환원과 광물 상전이 가능성을 확인하는 것이다. KURT 지하수 내 금속을 환원하는 미생물은 전자공여체로 포도당, 초산, 젖산, 개미산, 피루브산을, 전자수용체로 Fe(III)-citrate를 사용하여 농화배양 하였으며, 16S rRNA 분석을 통해 종 다양성을 확인하였다. 농화배양된 금속환원미생물에 의한 철과 망간의 환원과 생광물화작용을 알아보기 위해 전자공여체로 포도당, 초산, 젖산, 개미산, 피루브산을, 전자수용체로 철수산화물인 아카가나이트(akaganeite, ${\beta}$-FeOOH)와 망간산화물(manganese oxide, ${\lambda}-MnO_2$)을 이용하여 금속환원 실험을 실시하였다. 미생물 활동에 의해 형성된 환원물의 광물학적 특성은 SEM, EDX, XRD 분석을 통해 확인되었다. 연구 결과 KURT 지하수에서 금속을 환원하는 혐기성 미생물로는 Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp. 등이 확인되었고, 이 미생물들은 체외에서 철과 망간을 환원하여 이들 광물의 상전이를 확인하였다. 철(Fe)은 $Fe^{3+}$을 포함한 아카가나이트(${\beta}$-FeOOH)에서 $Fe^{2+}/Fe^{3+}$를 포함한 자철석($Fe_3O_4$)으로 환원되었고, 망간(Mn)은 $Mn^{4+}$를 포함한 망간산화물(${\lambda}-MnO_2$)에서 $Mn^{2+}$을 포함한 능망간석($MnCO_3$)으로 환원되었다. 이러한 지하 140 m의 KURT 지하수에서 서식하는 미생물들에 의해 철과 망간이 환원됨은 다른 중금속과 핵종원소의 환원 가능한 환경이 조성되었을 뿐 만 아니라, 미생물에 의하여 환원된 철의 재산화에 의해서도 주변 핵종원소가 환원될 수 있음을 의미한다. 따라서 이러한 직 간접적인 산화-환원 반응에 의해 KURT 지하수 내에서는 금속환원미생물들이 유해금속물질을 침전시켜 이동성을 줄일 수 있을 뿐만 아니라 고준위 폐기물에서 유해물질의 유출시 핵물질의 확산을 막는데 중요한 역할을 할 수 있을 것으로 사료된다.
광산 활동에서 비롯된 Fe(II)은 광산 배수를 따라 지표의 산화 환경에 노출되어 다양한 Fe(III)-산화수산화물로 침전된다. 대표적인 Fe(III) 침전 광물 중 하나인 페리하이드라이트는 결정도가 매우 낮아 비표면적이 크기 때문에, 중금속 및 다른 오염물질을 흡착하기에 용이하다. 페리하이드라이트는 자연 환경에서 열역학적으로 좀더 안정적인 침철석으로 전이된다. 페리하이드라이트에서 침철석으로 전이되는 동안 일어나는 중금속의 거동을 예측하기 위해서 산성광산배수에서 일어나는 페리하이드라이트에서 침철석으로의 전이와 이와 연관된 중금속의 유동성에 대한 정보는 중요하다. 광물 전이와 중금속 거동을 분석하기 위해 흥진태맥 석탄광의 산성광산배수 정화 시설의 코어 시료에 대하여 X-선 회절 분석(XRD), 화학 분석, 통계 분석이 시행되었다. XRD 결과는 페리하이드라이트가 코어 시료 상단에서 하단으로 점차 침철석으로 전이되었음을 보여주었다. 화학 분석 결과 코어시료에서 As의 상대적 농도는 배수에 비하여 매우 높아 As가 철옥시수산화물에 강하게 흡착 되었거나 공침되었을 가능성이 큼을 지시한다. 상관 분석 결과 또한 As와 Fe의 높은 친화도를 보여주어, 철광물이 침전하는 동안 As가 광산 배수에서 쉽게 제거될 수 있음을 나타냈다. 코어 시료에서 깊이가 깊어질수록 Fe에 대한 As, Cd, Co, Ni, Zn의 농도비는 대체로 감소하여, 광물 전이 시 배수 내 이들의 농도를 증가시킬 수 있음을 나타냈다. 이와 반대로 Fe에 대한 Cr의 농도는 깊이가 증가할수록 증가하였는데 이 것은 chromate과 철광물과의 화학결합과 페리하이드라이트와 침철석의 표면 전하로 인한 것으로 생각된다.
수지충전식 전해재생조내에서 바나듐-철-Picolinate 착화물이 함유된 모의 LOMI 제염폐액의 재생거동에 대한 공정변수의 영향을 조사하였다. 전기투석에 의해 양이온종이 제염 폐액으로부터 제거되는 재생 분리효율에 대한 전류밀도, 제염폐액 공급유량 및 재생조내 수지층두께 등 공정변수의 영향은 바나듐이온이 가장 크게 받는다. 공정변수의 영향을 총괄 파라미터인 공정변수비 $\alpha$로 정의하여 나타낼 때 재생 분리효율 95%이상을 얻기 위해서는 $\alpha$가 0.2 이하로 유지되어야 한다. LOMI 제염폐액의 재생시 전기투석 flux는 공정변수비, $\alpha$값이 증가함에 따라 철이온이 바나듐이온에 비해 더욱 커지는 경향을 보였다. 재생종료 후 발생되는 음극폐액내 철 및 코발트 등 방사성이온종은 음극액의 초기 수소이온 농도를 조절하면 침전제의 첨가 얼이 음극반응에 의해 음극액의 pH를 산성에서 알카리성으로 바꿀 수 있어, 수산화물 형태의 침전물 입자로 만들어 쉽게 제거할 수 있다. 재생시 바나듐이온은 대부분 $V^{III}$(Pic)$_2$$^{+}$ 착화물형태로 전기투석된다. 음극액으로 formate용액을 사용하면 철 및 코발트 등 방사성이온종을 제거한 음극액은 농축된 LOMI제염제로 회수하여 필요시 산화가를 조정한 후 재생된 착화제와 혼합하여 제염제로 재사용할 수 있어, 더욱 효과적으로 제염폐액을 재생하는 향상된 재생방법이다.다.
중금속 이온 존재 하에서 AsA 자동산화반응 과정에서의$O_2\bar{{\bullet}}$ 생성을 조사하기 위해, 수용액, 완충용액, 그리고 메탄올 용액 중에서 산소가스를 통기하면서 AsA 산화반응을 유도하였다. 우선, 수용액 및 완충용액 중에 SOD를 이용하여, $O_2\bar{{\bullet}}$로부터 생성되는 $H_2O_2$를 소거하기 위해 CAT를 첨가해서, SOD 무첨가의 경우와 비교하여 실험하였다. 그 결과, 수용액 중에서도 완충용액 중에서도 SOD가 $O_2\bar{{\bullet}}$를 소거하고, SOD의 존재에 따라 AsA 산화 반응이 억제되는 것이 밝혀졌다. 또한, 완충용액 중에서는 XTT를 가지고 $O_2\bar{{\bullet}}$ 생성을 재확인하기 위해, $O_2\bar{{\bullet}}$에 의한 XTT의 환원생성물인 formazan의 생성량이 470nm에서 흡수극대를 갖는 것을 확인한 후, AsA 산화반응 과정 중에 $O_2\bar{{\bullet}}$가 생성되는 것을 확인하였다. 이처럼, Fe(III)이온 및 Cu(II)이온이 존재하는 경우에도 비존재하의 경우와 마찬가지로 AsA 자동산화반응 과정 중에서 $O_2\bar{{\bullet}}$가 생성되는 것이 확인되었다. 또한, 메탄올 용액 중에서 Fe(III)이온 및 Cu(II)이온 존재하에서의 AsA 자동산화반응 과정에서의 $O_2\bar{{\bullet}}$ 생성을 조사하기 위해 NBT법을 이용하여 흡수극대 560nm에서 NBT의 환원생성물인 bule formazan을 측정하고,$O_2\bar{{\bullet}}$ 생성을 확인하였다. 반응개시로부터 15분이 경과하면서 반응액의 색변화를 눈으로 관찰할 수 있었으며, 560nm에서의 흡광도 측정치가 높아지는 경향을 나타내어 실험적으로 $O_2\bar{{\bullet}}$가 생성되는 것을 확인하였다. 또한, AsA 산화반응을 일으키는 과정에서 산소 농도의 증가에 따라 formazan 생성량이 증가한 사실과 AsA 농도의 증가에 따라 formazan 생성량이 낮아지는 경향을 보인 사실, 그리고, AsA 농도에 따른 분해율을 조사한 결과, 본 실험에 사용된 $50\;{\mu}M$의 AsA 농도에서는 분해된 양이 거의 변화가 없는 것으로 보아 NBT가 아닌 AsA 자동산화반응 과정에서 생성된 $O_2\bar{{\bullet}}$에 의해 formazan이 생성된 것임이 확인되었다. 한편, Fe(III)이온 및 Cu(II)이온 존재 하에서 $0.01\;{\mu}M$이하의 낮은 농도에서는 $O_2\bar{{\bullet}}$ 생성이 중금속 이온 비존재 하에서의 경우보다 유의적으로 높은 것으로 밝혀졌지만, 그 이상의 농도에서는 낮은 수치를 나타내었다 이상의 결과로 보아 수용성계에서 뿐 만 아니라, 비수용성계에서도 중금속 이온 존재 하에서의 AsA 자동산화반응에서의 $O_2\bar{{\bullet}}$ 생성이 시사되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.