DOI QR코드

DOI QR Code

Mineralogical and Geochemical Characteristics of the Precipitates in Acid Mine Drainage of the Heungjin-Taemaek Coal Mine

흥진태맥 석탄광 산성광산배수 침전물의 광물학적 및 지구화학적 특성

  • Shin, Ji-Hwan (School of Earth System Sciences, Kyungpook National University) ;
  • Park, Ji-Yeon (School of Earth System Sciences, Kyungpook National University) ;
  • Kim, Yeongkyoo (School of Earth System Sciences, Kyungpook National University)
  • 신지환 (경북대학교 지구시스템과학부) ;
  • 박지연 (경북대학교 지구시스템과학부) ;
  • 김영규 (경북대학교 지구시스템과학부)
  • Received : 2021.03.25
  • Accepted : 2021.04.26
  • Published : 2021.04.28

Abstract

Fe(II) released from mining activities is precipitated as various Fe(III)-oxyhydroxides when exposed to an oxidizing environment including mine drainage. Ferrihydrite, one of the representative precipitated Fe(III) minerals, is easy to adsorb heavy metals and other pollutants due to the large specific surface area caused by very low crystallinity. Ferrihydrite is transformed to thermodynamically more stable goethite in the natural environment. Hence, information on the transformation of ferrihydrite to goethite and the related mobility of heavy metals in the acid mine drainage is important to predict the behaviors of those elements during ferrihydrite to goethite transition. The behaviors of heavy metals during the transformation of ferrihydrite to goethite were investigated for core samples collected from an AMD treatment system in the Heungjin-Taemaek coal mine by using X-ray diffraction (XRD), chemical analysis, and statistical analysis. XRD results showed that ferrihydrite gradually transformed to goethite from the top to the bottom of the core samples. Chemical analysis showed that the relative concentration of As was significantly high in the core samples compared with that in the drainage, indicating that As was likely to be adsorbed strongly on or coprecipitated with iron oxyhydroxide. Correlation analysis also indicated that As can be easily removed from mine drainage during iron mineral precipitation due to its high affinity to Fe. The concentration ratio of As, Cd, Co, Ni, and Zn to Fe generally decreased with depth in the core samples, suggesting that mineral transformation can increase those concentrations in the drainage. In contrast, the concentration ratio of Cr to Fe increased with depth, which can be explained by the chemical bond of iron oxide and chromate, and surface charge of ferrihydrite and goethite.

광산 활동에서 비롯된 Fe(II)은 광산 배수를 따라 지표의 산화 환경에 노출되어 다양한 Fe(III)-산화수산화물로 침전된다. 대표적인 Fe(III) 침전 광물 중 하나인 페리하이드라이트는 결정도가 매우 낮아 비표면적이 크기 때문에, 중금속 및 다른 오염물질을 흡착하기에 용이하다. 페리하이드라이트는 자연 환경에서 열역학적으로 좀더 안정적인 침철석으로 전이된다. 페리하이드라이트에서 침철석으로 전이되는 동안 일어나는 중금속의 거동을 예측하기 위해서 산성광산배수에서 일어나는 페리하이드라이트에서 침철석으로의 전이와 이와 연관된 중금속의 유동성에 대한 정보는 중요하다. 광물 전이와 중금속 거동을 분석하기 위해 흥진태맥 석탄광의 산성광산배수 정화 시설의 코어 시료에 대하여 X-선 회절 분석(XRD), 화학 분석, 통계 분석이 시행되었다. XRD 결과는 페리하이드라이트가 코어 시료 상단에서 하단으로 점차 침철석으로 전이되었음을 보여주었다. 화학 분석 결과 코어시료에서 As의 상대적 농도는 배수에 비하여 매우 높아 As가 철옥시수산화물에 강하게 흡착 되었거나 공침되었을 가능성이 큼을 지시한다. 상관 분석 결과 또한 As와 Fe의 높은 친화도를 보여주어, 철광물이 침전하는 동안 As가 광산 배수에서 쉽게 제거될 수 있음을 나타냈다. 코어 시료에서 깊이가 깊어질수록 Fe에 대한 As, Cd, Co, Ni, Zn의 농도비는 대체로 감소하여, 광물 전이 시 배수 내 이들의 농도를 증가시킬 수 있음을 나타냈다. 이와 반대로 Fe에 대한 Cr의 농도는 깊이가 증가할수록 증가하였는데 이 것은 chromate과 철광물과의 화학결합과 페리하이드라이트와 침철석의 표면 전하로 인한 것으로 생각된다.

Keywords

References

  1. Antelo, J., Arce, F. and Fiol, S. (2015) Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions. Chem. Geol., v.410, p.53-62. doi: 10.1016/j.chemgeo.2015.06.011
  2. Aredes, S., Klein, B. and Pawlik, M. (2013) The removal of arsenic from water using natural iron oxide minerals. J. Clean. Prod., v.60, p.71-76. doi: 10.1016/j.jclepro.2012.10.035
  3. Boland, D.D., Collins, R.N., Miller, C.J., Glover, C.J. and Waite, T.D. (2014) Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environ. Sci. Technol., v.48, p.5477-5485. doi: 10.1021/es4043275
  4. Burleson, D.J. and Penn, R.L. (2006) Two-step growth of goethite from ferrihydrite. Langmuir, v.22, p.402-409. doi: 10.1021/la051883g
  5. Cismasu, A.C., Michel, F.M., Tcaciuc, A.P., Tyliszczak, T. and Brown, J.G.E. (2011) Composition and structural aspects of naturally occurring ferrihydrite. Compt. Rendus Geosci., v.343, p.210-218. doi: 10.1016/j.crte.2010.11.001
  6. Cornell, R.M., Giovanoli, R. and Schindler, P.W. (1987) Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays Clay Min., v.35, p.21-28. doi: 10.1346/CCMN.1987.0350103
  7. Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed., Wiley-VCH, Weinheim, Germany.
  8. Cudennec, Y. and Lecerf, A. (2006) The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem., v.179, p.716-722. doi: 10.1016/j.jssc.2005.11.030
  9. Das, S., Hendry, M.J. and Essilfie-Dughan, J. (2013) Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Appl. Geochem., v.28, p.185-193. doi: 10.1016/j.apgeochem.2012.10.026
  10. Elzinga, E.E., Tang, Y., McDonald, J., DeSisto, S. and Reeder, R.J. (2009) Macroscopic and spectroscopic characterization of selenite, selenite, and chromate adsorption at the solid-water interface of γ-Al2O3. J. Colloid Interf. Sci., v.340, p.153-159. doi: 10.1016/j.jcis.2009.08.033
  11. Fuller, C.C., Davis, J.A. and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta, v.57, p.2271-2282. doi: 10.1016/0016-7037(93)90568-H
  12. Goldberg, S. and Johnston, C.T. (2001) Mechanism of arsenic adsorption on amorphous oxides: evaluated using macroscopic measurements vibrational spectroscopy and surface complexation modeling. J. Colloid Interf. Sci., v.234, p.204-216. doi: 10.1006/jcis.2000.7295
  13. Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K. and Fendorf, S. (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta, v.67, p.2977-2992. doi: 10.1016/S0016-7037(03)00276-X
  14. Hiemstra, T. and Van Riemsdijk, W.H. (2009) A surface structural model for ferrihydrite: I. Sites related to primary charge, molar mass, and mass density. Geochim. Cosmochim. Acta, v.73, p.4423-4436. doi: 10.1016/j.gca.2009.04.032
  15. Jia, Y.F., Xu, L., Wang, X. and Demopoulos, G.P. (2007) Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta, v.71, p.1643-1654. doi: 10.1016/j.gca.2006.12.021
  16. Jiang, W., Lv, J., Luo, L., Yang, K., Lin, Y., Hu, F., Zhang, J. and Zhang, S. (2013) Arsenate and cadmium co-adsorption and coprecipitation on goethite. J. Hazard. Mater., v.262, p.55-63. doi: 10.1016/j.jhazmat.2013.08.030
  17. Johnston, C.P. and Chrysochoou, M. (2016) Mechanisms of chromate, selenate, and sulfate adsorption on al-substituted ferrihydrite: implications for ferrihydrite surface structure and reactivity. Environ. Sci. Technol., v.50, p.3589-3596. doi: 10.1021/acs.est.5b05529
  18. Kim, H.J. and Kim, Y. (2021) Schwertmannite transformation to goethite and the related mobility of trace metals in acid mine drainage. Chemosphere, v.269, 128720. doi: 10.1016/j.chemosphere.2020.128720
  19. Kumpulainen, S., Carlson, L. and Raisanen, M.L. (2007) Seasonal variations of ochreous precipitates in mine effluents in Finland. Appl. Geochem., v.22, p.760-777. doi: 10.1016/j.apgeochem.2006.12.016
  20. Lenoble, V., Bouras, O., Deluchat, V., Serpaud, B. and Bollinger, J.-C. (2002) Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interf. Sci., v.255, p.52-58. doi: 10.1006/jcis.2002.8646
  21. Liu, H., Li, P., Zhu, M., Wei, Y. and Sun, Y. (2007) Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite. J. Solid State Chem., v.180, p.2121-2128. doi: 10.1016/j.jssc.2007.03.022
  22. Liu, J., Zhu, R., Xu, T., Xu, Y., Ge, F., Xi, Y., Zhu, J. and He, H. (2016) Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite. Chemosphere, v.144, p.1148-1155. doi: 10.1016/j.chemosphere.2015.09.083
  23. Li, Z.Z., Zhang, T. and Li, K. (2011) One-step synthesis of mesoporous two-line ferrihydrite for effective elimination of arsenic contaminants from natural water. Dalton Trans., v.40, p.2062-2066. doi: 10.1039/C0DT01138J
  24. Mallet, M., Barthelemy, K., Ruby, C., Renard, A. and Naille, S. (2013) Investigation of phosphate adsorption onto ferrihydrite by X-ray photoelectron spectroscopy. J. Colloid Interface Sci., v.407, p.95-101. doi: 10.1016/j.jcis.2013.06.049
  25. Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Romeo, M. (2009) Arsenic adsorption onto hematite and goethite. C. R. Chim., v.12, p.876-881. doi: 10.1016/j.crci.2008.10.012
  26. Mamun, A.Al., Morita, M., Matsuoka, M. and Tokoro, C. (2017) Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution. J. Hazard Mater., v.334, p.142-149. doi: 10.1016/j.jhazmat.2017.03.058
  27. Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L. and Parise, J.B. (2007) The structure of ferrihydrite, a nanocrystalline material. Science, v.316, p.1726-1729. doi: 10.1126/science.1142525
  28. Missana, T., Garcia-Gutierrez, M. and Maffiotte, C. (2003) Experimental and modeling study of the uranium (VI) sorption on goethite. J. Colloid Interface Sci., v.260, p.291-301. doi: 10.1016/S0021-9797(02)00246-1
  29. Navrotsky, A., Mazeina, L. and Majzlan, J. (2008) Size-driven structural and thermodynamic complexity in iron oxides. Science, v.319, p.1635-1638. doi: 10.1126/science.1148614
  30. Pedersen, H.D., Postma, D. and Jakobsen, R. (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim. Cosmochim. Acta, v.70, p.4116-4129. doi: 10.1016/j.gca.2006.06.1370
  31. Raven, K.P., Jain, A. and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., v.32, p.344-349. doi: 10.1021/es970421p
  32. Schwertmann, U., Bigham, J.M. and Murad, E. (1995) The first occurrence of schwertmannite in a natural stream environment. European J. Miner., v.7, p.547-552. doi: 10.1127/ejm/7/3/0547
  33. Schwertmann, U. and Fischer, W.R. (1973) Natural "amorphous" ferric hydroxide. Geoderma, v.10, p.237-247. doi: 10.1016/0016-7061(73)90066-9
  34. Schwertmann, U. and Murad, E. (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., v.31, p.277-284. doi: 10.1346/CCMN.1983.0310405
  35. Schwertmann, U., Stanjek, H. and Becher, H.H. (2004) Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25℃. Clay Miner., v.39, p.433-438. doi: 10.1180/0009855043940145
  36. Tang, Y., Wang, J. and Gao, N. (2010) Characteristics and model studies for fluoride and arsenic adsorption on goethite. J. Environ. Sci., v.22, p.1689-1694. doi: 10.1016/S1001-0742(09)60307-7
  37. Tokoro, C., Kadokura, M. and Kato, T. (2020) Mechanism of arsenate coprecipitation at the solid/liquid interface of ferrihydrite: a perspective review. Adv. Powder Technol., v.31, p.859-866. doi: 10.1016/j.apt.2019.12.004
  38. Vu, H.P. and Moreau, J.W. (2015) Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite. Chemosphere, v.119, p.987-993. doi: 10.1016/j.chemosphere.2014.09.019
  39. Wang, X., Liu, F., Tan, W., Li, W., Feng, X. and Sparks, D.L. (2013) Characteristics of phosphate adsorption-desorption onto ferrihydrite: comparison with well-crystalline Fe (Hydr)oxides. Soil Sci., v.178, p.1-11. doi: 10.1097/SS.0b013e31828683f8
  40. Zhang, W., Singh, P., Paling, E. and Delides, S. (2004) Arsenic removal from contaminated water by natural iron ores. Miner. Eng., v.17, p.517-524. doi: 10.1016/j.mineng.2003.11.020
  41. Zhang, Z., Bi, X., Li, X., Zhao, Q. and Chen, H. (2018) Schwertmannite: occurrence, properties, synthesis and application in environmental remediation. RSC Advances, v.8, p.33583-33599. doi: 10.1039/C8RA06025H
  42. Zhao, Z., Jia, Y., Xu, L. and Zhao, S. (2011) Adsorption and heterogeneous oxidation of As(III) on ferrihydrite. Water Research, v.45, p.6496-6504. doi: 10.1016/j.watres.2011.09.051