• Title/Summary/Keyword: Fe(철) 함량

Search Result 349, Processing Time 0.165 seconds

The Relationship Between pH and the Activity of Ferrous Iron In the Reduced Soil Under Water-logging (담수조건(湛水條件)에서 환원(還元)된 토양용액(土壤溶液)중 pH와 Fe++ 이온의 활동도(活動度)와의 관계(關係))

  • Hong, Chong-Woon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.294-298
    • /
    • 1993
  • The relationship between pH and the activity of ferrous iron in the reduced soil under water-logging was investigated theoretically and experimentally. The results of this study revealed, contrary to hitherto assumed, that the $pH-Fe^{+{+}}$ relationship in the commonly occurring rice soils under reduced condition is close to that in $FeCO_3-CO_2-H_2O$ system, being remote from that in $Fe_3(OH)_8-H_2O$ system and $Fe(OH)_2-H_2O$ system. This indicates that the activity of ferrous iron in the reduced rice soils under water-logging is likely to be governed by $FeCO_3$, neither by $Fe_3(OH)_8$, nor by $Fe(OH)_2$.

  • PDF

The Effect of Iron Content on the Atomic Structure of Alkali Silicate Glasses using Solid-state NMR Spectroscopy (비정질 알칼리 규산염 원자구조의 철 함량 효과에 관한 고체 NMR 분광학 연구)

  • Kim, Hyo-Im;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.301-312
    • /
    • 2011
  • The study on the atomic structure of iron-bearing silicate glasses has significant geological implications for both diverse igneous processes on Earth surface and ultra-low velocity zones at the core-mantle boundary. Here, we report experimental results on the effect of iron content on the atomic structure in iron-bearing alkali silicate glasses ($Na_2O-Fe_2O_3-SiO_2$ glasses, up to 16.07 wt% $Fe_2O_3$) using $^{29}Si$ and $^{17}O$ solid-state NMR spectroscopy. $^{29}Si$ spin-lattice ($T_1$) relaxation time for the glasses decreases with increasing iron content due to an enhanced interaction between nuclear spin and unpaired electron in iron. $^{29}Si$ MAS NMR spectra for the glasses show a decrease in signal intensity and an increase in peak width with increasing iron content. However, the heterogeneous peak broa-dening in $^{29}Si$ MAS NMR spectra suggests the heterogeneous distribution of $Q^n$ species around iron in iron-bearing silicate glasses. While nonbridging oxygen ($Na-O-Si$) and bridging oxygen (Si-O-Si) peaks are partially resolved in $^{17}O$ MAS NMR spectrum for iron-free silicate glass, it is difficult to distinguish the oxygen clusters in iron-bearing silicate glass. The Lorentzian peak shape for $^{29}Si$ and $^{17}O$ MAS NMR spectra may reflect life-time broadening due to spin-electron interaction. These results demonstrate that solid-state NMR can be an effective probe of the detailed structure in iron-bearing silicate glasses.

Hydrothermal Cold-silver Mineralization of the Gajok Deposit in the Hongcheon Mining District, Korea (홍천 광화대, 가족 광상의 금.은 광화작용)

  • Pak, Sang-Joon;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • The Cretaceous Gajok gold-silver deposit within porphyry granite is located nearby the Cretaceous Pungam basin at the northeastern area in Republic of Korea. The Gajok gold-silver deposit is distinctively composed of a multiple-complex hydrothermal veins with comb, crustiform chalcedony quartz and vug textures, implying it was formed relatively shallower depth. The hypogene open-space filling veins could be divided into 5 paragenetic sequences, increasing tendency of Ag-rich electrum and Ag-phases with increasing paragenetic time. Electrum with high gold contents (${\sim}50$ atomic % Au) as well as sphalerite with high FeS contents (${\sim}6$ mole % FeS) are representative ore minerals in the middle stage. The late stage is characterized by silver-phase such like native silver and/or argentite, coexisting with Ag-rich electrum ($10{\sim}30$ atomic % Au) and Fe-poor sphalerite (< 1 mole % FeS). The ore-forming fluids evolution started at relatively high temperature and salinity (${\sim}360^{\circ}C$, ${\sim}7\;wt.%$ eq. NaCl) and were evolved by dilution and mixing mechanisms on the basis of fluid inclusion study. The gold-silver mineralization proceeded from ore-forming fluids containing greater amounts of less-evolved meteoric waters(${\delta}^{18}O$; $-0.6{\sim}-6.7\;%o$). These results imply that gold-silver mineralization of the Cretaceous Gaiok deposit formed at shallow-crustal level and could be categorized into low-sulfidation epithermal type, related to Cretaceous igneous activity.

The Chemical Composition of Barley and Wheat Varieties (용도가 다른 보리와 밀 3품종의 영양성분)

  • Choe, Jeong-Sook;Youn, Jee-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.223-229
    • /
    • 2005
  • The chemical components of barley (Jinmichapssal, Seodunchal, and Dusan No.8) and wheat (Alchanmil, Tapdongmil, and Olgeurumil) varieties were determined in terms of proximate compositions, minerals, fatty acids, amino acids and vitamin. There are significant differences in protein and lipid (p<0.00l, respectively), fiber (p<0.05) of barleys. There are significant differences in lipid contents (p<0.00l) of wheats. The major minerals of barley were Ca 24∼31 mg%, P 117∼129 mg%, Fe 1.7∼2.9 mg%, Na 13∼18 mg%, K 227∼73 mg%, Zn 1.1∼1.2 mg%, and Mg 38∼45 mg%. The content of Ca in Jinmichapssal was significantly higher than those in the other varieties (p<0.00l). The mineral contents of wheat were Ca 39∼67 mg%, P 172∼270 mg%, Fe 3.7∼5.6 mg%, Na 15∼17 mg%, K 537∼558 mg%, Zn 2.1∼2.3 mg% and Mg 106∼127 mg%. There are significant differences in Ca, P, Fe and Mg of 3 kinds of wheat. The barleys contain vitamin B$_1$ 0.27∼0.36 mg%, vitamin B$_2$ 0.07∼0.11 mg% and niacin 1.21∼1.44 mg%. The content of vitamin B$_1$ in Jinmichapssal and Seodunchal was significantly higher than that in Dusan No.8 (p<0.0l). The content of vitamin B$_2$ in Seodunchal (0.11 mg%) was significantly higher than those in the other varieties (p<0.0l). The content of niacin in barleys was no significant differences. The wheats contain vitamin B$_1$ 0.41∼0.52 mg%, vitamin B$_2$ 0.29∼0.39 mg% and niacin 1.86∼2.81 mg%. The contents of vitamin B$_2$ in Olgeurumil (0.39 mg%) and niacin in Tapdongmil (2.81 mg%) were considerably higher than those in the other varieties. The contents of vitamin B$_1$, B$_2$, niacin in wheats were higher than those of barleys. Major fatty acids in barley and wheat varieties were linoleic acid, palmitic acid and oleic acid, which comprised of about 90%∼92% of total fatty acid. The contents of lysine, valine, and tryptophan in Dusan No.8 were significantly higher than those in the other varieties. The contents of lysine, isoleucine in Tapdongmil were significantly lower than those in the other varieties. The content of amino acid in wheat was higher than those of barleys.

Preparation of Cobalt-Substituted Iron Oxide Powder from Organometallic Precursors (Ⅱ) (유기금속 전구체로부터 코발트 치환 산화철 분말 제조 (Ⅱ))

  • Kim, Jeong Su;Gang, Han Cheol;Hong, Yang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 1994
  • Ultrafine cobalt-substituted iron oxide particles were prepared by the thermal decomposition and oxidation of the new organometallic precursor, $Co_xFe_{1-x}(N_2H_3COO)_2(N_2H_4)_2$ (x = 0, 0.01, 0.02, 0.03, 0.05, 0.10, 1.00). The organometallic precursors were synthesized by the reaction of Co(II) and Fe(II) ion in a mole ratio of x : 1-x with hydrazinocarboxylic acid, and characterized by quantitative analysis, elemental analysis and infrared spectroscopy. The mechanistic study on the thermal decomposition of the organometallic precursors was performed by TG-DTG and DSC. The cobalt-substituted iron oxide particles were obtained by the heat treatment of the precursors at $350^{\circ}C$ and $450^{\circ}C$ for six hours in air. The prepared iron oxide was found to have two phases such as ${\gamma}-Fe_2O_3$ and a mixture of ${\gamma}-Fe_2O_3\;and\;{\alpha}-Fe_2O_3$ at $350^{\circ}C$ and $450^{\circ}C$ respectively. The particle shape was equiaxial and the particle size was less than 0.05 ${\mu}m.$ The coercivity and squareness of the cobalt substituted iron oxide particles increased with increasing cobalt content. Both coercivity and squareness showed higher values at $450^{\circ}C.$

  • PDF

Growth-promoting Effect of New Iron-chelating Fertilizer on Lettuce (산세수와 게껍질을 이용한 신기능성 철분 비료의 상추 생육 촉진 효과)

  • Hwang, Ji Young;Jun, Sang Eun;Park, Nam-Jo;Oh, Ju Sung;Lee, Yong Jik;Sohn, Eun Ju;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.390-397
    • /
    • 2017
  • Iron (Fe) is an important micronutrient for the health and growth of plants. Iron is usually provided by fertilizers, and iron-chelate fertilizers are well absorbed by plants. This study presents the plant growth-promoting effects of a new functional iron fertilizer, Fe-chelating crab shell powder (FCSP), which is generated from the chelation of Fe ions with crab shell powder. Iron chelate was derived from spent pickling liquor, which is rich in reductive iron, iron(II) oxide. To analyze the effects of FCSP on plant growth, we treated lettuce with several concentrations of FCSP in both lab- and field-scale experiments. In the lab-scale test, the treatment of 50 ppm of FCSP highly promoted growth and resulted in increases in the size, weight, number and chlorophylls content of leaves of plants compared to the treatment of crab shell powder. Fifty ppm of FCSP also increased the size and weight of leaves up to 2 times compared to the application of chemical fertilizer and/or compost in field conditions. In addition, the FCSP treatment resulted in the highest ion uptake of Fe in lettuce leaves. Moreover, FCSP led to increases in the amounts of Fe, Ca, available phosphorus and organic matter in treated soil, indicating that soil quality was improved. Taken together, our results demonstrate that FCSP promotes lettuce growth via enhancement of Fe availability and improves soil quality. Therefore, FCSP can be utilized as a new functional iron fertilizer.

Effects of Carbon Content on Microstructure and Amount of Austenite in As-Cast and Heat-Treated Multi-Component White Cast Iron (다합금계 백주철에 있어서 탄소가 탄화물의 형태에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.17 no.5
    • /
    • pp.488-493
    • /
    • 1997
  • 주방상태 및 열처리를 행한 다합금계백주철(Fe-5%Cr-5%V-5%Mo-5%W-X%C(X=0.5, 1.0, 1.5, 2.0, 2.5, 3.0)에 있어서 탄소함량이 탄화물의 형태 및 잔류오스테나이트의 함량에 미치는 영향에 관하여 연구하였다. 주방상태의 경우, 2.0% 이하의 탄소함량에서는 편상MC 및 층상 $M_2C$탄화물만 관찰되었으나 2.5%C 이상의 경우, 편상 및 괴상MC, 층상$M_2C$ 그리고 셀형 $M_7C_3$탄화물이 관찰되었다. 또한, 기지조직내 오스테나이트의 함량도 탄소첨가와 더불어 점차 증가하여 2.5%C에서 84.8%의 최대함량을 나타낸 후, 3.0%C에서는 다시 감소하였다. 또한 열처리한 시편의 경우, 1차탄화물의 형상은 주방상태의 그것과 비슷하였으나 열처리중 기지조직내 용해되었던 C, Cr, V, Mo, W등이 아주 미세한 2차탄화물의 형태로 석출되어 기지조직내 오스테나이트의 함량은 주방상태의 그것에 비해 감소하였다.

  • PDF

Studies on X-Ray Fluorescence Analysis of Sulfide Ores by Solution Technique (II). Analysis of Iron, Copper and Cobalt (용액법을 이용한 황화광석의 X-선 형광분석에 관한 연구 (제2보). 철, 구리 및 코발트의 분석)

  • Young-Sang Kim;Kee-Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.320-325
    • /
    • 1982
  • Utilyzing the solution prepared for the sulfur determination, the amounts of iron, copper and cobalt in the sulfide ore were determined by X-ray fluorescence spectrometry. The samples were dissolved with the mixed solutions of ,$Br_2\;and\;HNO_3$ and a major constituent of $SiO_2$was repelled from the solution by HF treatment several times. The analytical results agreed with the data obtained by conventional methods within ${\pm}$1.5% for Fe of the range of 20 to 50%, ${\pm}$1.0% for Cu of 10 to 15%, and ${\pm}$0.4% for Co of 1 to 5%. The present method was tolerably found to be reproducible.

  • PDF

A Study on Reduction Treatment of EAF′s Dusts Mixed with Millscale (電氣爐製鋼粉塵과 millscale 混合펠릿의 還元擧動에 관한 硏究)

  • 윤기병
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2000
  • Generally, the residues of EAF's dusts treated by reduction process at high temperature are disposed. If the residues can be recycled as iron sources of EAF by upgrading their iron contents, it can be expected to reduce the amounts of disposed wastes and the environmental impacts. Reduction of EAF's dusts mixed with millscale was carried out in rotary hearth furnace to upgrade iron contents of reduction residues. Dusts should be reduced rapidly to protect from reoxidation of reduced iron residue which can be reoxidized at high temperature. In our experimental conditions, optimum reduction time was about 40min. and iron contents of the residues were increased with increasing mixing ratio of millscale and upgrade to 85% at 50%wt mixing ratio. Zinc and lead contents in residues were about 3% and 0.5% respectively. The residues reduced rapidly must be recycled in EAF because heavy metal elements in the residues can be extracted easily and contaminate air and water.

  • PDF

Petrochemistry of the Hongcheon Fe-REE ore deposit in the Hongcheon area, Korea (홍천 철-희토류광상 모암의 암석화학)

  • 박중권;이한영
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.135-153
    • /
    • 2003
  • In order to understand its origin and petrogenesis, petrochemical studies of major, trace elements, REE, and stable isotopes of oxygen and carbon from the Hongcheon Fe-REE deposits have been investigated. The Hongcheon Fe-REE deposit intruding into Precambrian metasedimentary rocks consists of magnetite, various carbonates such as ankerite, siderite, magnesite and strontianite, monazite, aegirine-augite, Na-amphibole, and sulfides. Compared with major elements abundances of typical ferro-carbonatites, the Hongcheon Fe-REE deposit is enriched in FeO and depleted in CaO with increasing of $SiO_2$, where $TiO_2$and $A1_2O_3$increased and CaO, FeO, MgO and $P_2O_5$ are slightly decreased, but those are rather scattered and their trends are somewhat ambiguous. V Ni, U and Rb slightly increasing with of $SiO_2$increase and scattering or no trends of other detected elements. Nb, Zr and Zn are depleted then the abundances of typical ferro-carbonatites (Woolley and Kempe, 1989). In rare earth elements a large enrichment of total REE (maximum 14.8 wt%) and LREE relative to chondrites and HREE depleted more then the values of ferro-carbontites therefore La/Lu ratios shows large abundances (max. 16,197). The results of stable isotopes of O and C from minerals of ankerite and strontianite and whole rocks represent studied rocks are from igneous carbonatitic melts. Although petrochemical characteristics of the Hongcheon Fe-REE deposits are somewhat different from normal ferro-carbonatites from the world, this discrepancy suggests another conclusion that petrochemical characteristic of the studied Fe-REE mineralized rocks are similar to those of phoscorites from Kovdor, Russia and Sokli, Finland showing the same petrochemical compositions described above.