DOI QR코드

DOI QR Code

Growth-promoting Effect of New Iron-chelating Fertilizer on Lettuce

산세수와 게껍질을 이용한 신기능성 철분 비료의 상추 생육 촉진 효과

  • Hwang, Ji Young (Department of Medical Bioscience, Dong-A University) ;
  • Jun, Sang Eun (Department of Molecular Genetics, Dong-A University) ;
  • Park, Nam-Jo (Bioapplications Inc., Pohang University of Science and Technology) ;
  • Oh, Ju Sung (Department of Molecular Genetics, Dong-A University) ;
  • Lee, Yong Jik (Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology) ;
  • Sohn, Eun Ju (Bioapplications Inc., Pohang University of Science and Technology) ;
  • Kim, Gyung-Tae (Department of Medical Bioscience, Dong-A University)
  • Received : 2016.11.18
  • Accepted : 2016.11.22
  • Published : 2017.04.30

Abstract

Iron (Fe) is an important micronutrient for the health and growth of plants. Iron is usually provided by fertilizers, and iron-chelate fertilizers are well absorbed by plants. This study presents the plant growth-promoting effects of a new functional iron fertilizer, Fe-chelating crab shell powder (FCSP), which is generated from the chelation of Fe ions with crab shell powder. Iron chelate was derived from spent pickling liquor, which is rich in reductive iron, iron(II) oxide. To analyze the effects of FCSP on plant growth, we treated lettuce with several concentrations of FCSP in both lab- and field-scale experiments. In the lab-scale test, the treatment of 50 ppm of FCSP highly promoted growth and resulted in increases in the size, weight, number and chlorophylls content of leaves of plants compared to the treatment of crab shell powder. Fifty ppm of FCSP also increased the size and weight of leaves up to 2 times compared to the application of chemical fertilizer and/or compost in field conditions. In addition, the FCSP treatment resulted in the highest ion uptake of Fe in lettuce leaves. Moreover, FCSP led to increases in the amounts of Fe, Ca, available phosphorus and organic matter in treated soil, indicating that soil quality was improved. Taken together, our results demonstrate that FCSP promotes lettuce growth via enhancement of Fe availability and improves soil quality. Therefore, FCSP can be utilized as a new functional iron fertilizer.

작물 재배에서 빈번히 발생되는 철분 부족 현상은 식물의 생육 저하와 생산성 감소를 야기한다. 철분의 흡수는 철분 킬레이트제를 이용해서 높일 수 있다. 본 연구에서는 제철산업의 부산물인 산세수 유래의 2가 철 이온을 게껍질(CSP)에 킬레이트시킨 신기능성 철분 비료(FCSP)를 제작하고, 상추 재배에 적용하여 생육 촉진 효과를 분석하였다. 제조한 철 비료의 효과를 검증하기 위해, 연구실 내 소규모 시험에서 무처리구, 게껍질 처리구, 그리고 여러 농도의 Fe-게껍질 킬레이트 처리구에서 상추의 생장을 분석한 결과, 50 ppm Fe-게껍질 킬레이트 처리구에서 엽수, 엽중, 엽장 및 엽폭이 무처리구와 게껍질 처리구에 비해 증가하였으며, 상추 잎의 엽록소의 함량 또한 증가하였다. 포장 시험 역시 50 ppm Fe-게껍질 킬레이트 처리구에서 엽수, 엽중, 엽장 및 엽폭에서 화학비료와 퇴비를 혼합한 기존 재배 방식 처리구에 비해 최대 2배 이상의 증가를 보였고, 식물체내 Fe의 함량 또한 가장 높게 나타났다. 또한 철 이온을 게껍질에 킬레이트한 비료의 처리가 토양 내의 Fe와 Ca의 함량을 증가시켰으며 유효인산과 유기물의 함량 또한 증가시켜 토질을 개선시키는 효과를 보였다. 이러한 결과들을 종합할 때, Fe-게껍질 킬레이트 복합체는 기존의 비료 처리 방식인 화학비료와 퇴비 사용 보다 뛰어난 생육 증대 효과와 토질 개선 효과를 나타냄으로써 작물 재배에 있어서 효과적인 신기능성 철분 소재로서 활용 가치가 있을 것으로 사료된다.

Keywords

References

  1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1. https://doi.org/10.1104/pp.24.1.1
  2. Bautista-Banos, S., Hernandez-Lauzardo, A. N., Velazquez- Del Valle, M. G., Hernandez-Lopez, M., Barka, E. A., Bosquez-Molina, E. and Wilson, C. L. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25, 108-118. https://doi.org/10.1016/j.cropro.2005.03.010
  3. Duy, D., Stübe, R., Wanner, G. and Philippar, K. 2011. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol. 155, 1709-1722. https://doi.org/10.1104/pp.110.170233
  4. Guerinot, M. L. and Yi, Y. 1994. Iron: nutritious, noxious, and not readily available. Plant Physiol. 104, 815. https://doi.org/10.1104/pp.104.3.815
  5. Hansch, R. and Mendel, R. R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259-266. https://doi.org/10.1016/j.pbi.2009.05.006
  6. Jang, E. J., Gu, E. H., Hwang, B. H., Lee, C. and Kim, J. K. 2012. Chitosan stimulates calcium uptake and enhances the capability of Chinese cabbage plant to resist soft rot disease caused by pectobacterium carotovorum ssp. carotovorum. J. Kor. Soc. Hort. Sci. 30, 137-143.
  7. Karimian, N., Kalbasi, M. and Hajrasuliha, S. 2012. Effect of converter sludge, and its mixtures with organic matter, elemental sulfur and sulfuric acid on availability of iron, phosphorus and manganese of 3 calcareous soils from central Iran. Afr. J. Agric. Res. 7, 568-576.
  8. Koski, V. M. 1950. Chlorophyll formation in seedlings of Zea mays L. Arch Biochem. 29, 339-343.
  9. Mori, S. 1999. Iron acquisition by plants. Curr. Opin. Plant Biol. 2, 250-253. https://doi.org/10.1016/S1369-5266(99)80043-0
  10. Muhaemin, M. 2005. Chelating ability of crab shell particles and extracted acetamido groups (chitin and chitosan) from Portunus sp to lead ($Pb^{2+}$). J. Coast. Dev. 9, 1-7.
  11. NAAS (National Academy of Agricultural Science). 2010. Fertilization standard of crop. Rural Development Administration. Korea.
  12. Pradhan, S., Shukla, S. S. and Dorris, K. L. 2005. Removal of nickel from aqueous solutions using crab shells. J. Hazard. Mater. 125, 201-204. https://doi.org/10.1016/j.jhazmat.2005.05.029
  13. Rout, G. R. and Sahoo, S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3, 1-24.
  14. Salachna, P. and Zawadzińska, A. 2014. Effect of chitosan on plant growth, flowering and corms yield of potted freesia. J. Ecol. Eng. 15 97-102.
  15. Sharp, R. G. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3, 757-793. https://doi.org/10.3390/agronomy3040757
  16. Silveira, V. C. D., Oliveira, A. P. D., Sperotto, R. A., Espindola, L. S., Amaral, L., Dias, J. F., da Cunha, J. B. and Fett, J. P. 2007. Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz. J. Plant Physiol. 19, 127-139. https://doi.org/10.1590/S1677-04202007000200005
  17. Vert, G., Grotz, N., Dedaldechamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F. and Curie, C. 2002. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14, 1223-1233. https://doi.org/10.1105/tpc.001388
  18. Xian, W. A. N. G. and Qing-Sheng, C. A. I. 2006. Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedosphere 16, 519-524. https://doi.org/10.1016/S1002-0160(06)60083-0
  19. Zhang, P., Ma, D., Wang, Y., Li, S. and Yin, L. 2012. Overexpression of OsDPR, a novel rice gene highly expressed under iron deficiency, suppresses plant growth. Sci. China Life Sci. 55, 1082-1091.