• 제목/요약/키워드: Fault parameters

검색결과 471건 처리시간 0.034초

무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션 (The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter)

  • 주민석;이상진;오윤상;고태국
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF

유한고장 NHPP 어랑분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구 (A Study on the Property Analysis of Software Reliability Model with Shape Parameter Change of Finite Fault NHPP Erlang Distribution)

  • 민경일
    • Journal of Information Technology Applications and Management
    • /
    • 제25권4호
    • /
    • pp.115-122
    • /
    • 2018
  • Software reliability has the greatest impact on computer system reliability and software quality. For this software reliability analysis, In this study, we compare and analyze the trends of the properties affecting the reliability according to the shape parameters of Erlang distribution based on the finite fault NHPP. Software failure time data were used to analyze software failure phenomena, the maximum likelihood estimation method was used for parameter estimation. As a result, it can be seen that the intensity function is effective because it shows a tendency to decrease with time when the shape parameters a = 1 and a = 3. However, the pattern of the mean value function showed an underestimation pattern for the true values when the shape parameters a = 1 and a = 2, but it was found to be more efficient when a = 3 because the error width from the true value was small. Also, in the reliability evaluation of the future mission time, the stable and high trend was shown when the shape parameters a = 1 and a = 3, but on the contrary, when a = 2, the reliability decreased with the failure time. Through this study, the property of finite fault NHPP Erlang model according to the change of shape parameter without existing research case was newly analyzed, and new research information that software developers can use as basic guideline was presented.

배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구 (Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis)

  • 박진형;김재원;이미영;김병철;정성철;김종훈
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.

지락고장에 의해 금속제 유연전선관에 유도된 개폐서지전압의 특성 (Characteristics of the Switching Surge Voltages Induced at Metal Flexible Conduits Due to Ground Faults)

  • 이복희;신건진;박희열;엄상현;김유하
    • 조명전기설비학회논문지
    • /
    • 제27권5호
    • /
    • pp.74-80
    • /
    • 2013
  • This paper presents the transient behavior of the switching surge voltages generated by interruption of DC ground fault currents flowing through metal flexible conduits. All fault circuits consist of line parameters such as resistance, inductance, capacitance and conductance. The use of nonmagnetic metal conduits should be taken into account in order to reduce the inductance of battery charger distribution circuits. The frequency-dependent circuit parameters of metal flexible conduits were measured. The switching surge voltages generated at the ground fault circuit consisted of steel-galvanized alloy and aluminium conduits were investigated. As a result, the impedances of metal flexible conduits are significantly increased over the range of the frequency above 10 kHz and the switching surge voltages generated along aluminium flexible conduit are lower than those along steel-galvanized alloy conduit when DC fault current is interrupted.

HVAC 시스템의 중복고장 검출을 위한 실험적 연구 (An Experimental Study on Multi-Fault Detection and Diagnosis Analysis of HVAC System)

  • 조성환;홍영주;양훈철;안병천
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.932-941
    • /
    • 2004
  • The objective of this study is to detect the multi-fault of HVAC system using a new pattern classification technique. To classify the effect of single-fault in determining the pattern, supply air temperature, OA-damper, supply fan, and air flowrate were chosen as experimental parameters. The combination of supply temperature, flow rate, supply fan and OA-damper were chosen as multi-fault conditions. Three kinds of patterns were introduced in the analysis of multi-fault problem. To solve multi-fault problem, the new pattern classification technique using residual ratio analysis was introduced to detect the multi-fault as well as single-fault. The residual ratio could diagnose single-fault or multi-fault into several patterns.

ART2 Neural Network Applications for Diagnosis of Sensor Fault in the Indoor Gas Monitoring System

  • Lee, In-Soo;Cho, Jung-Hwan;Shim, Chang-Hyun;Lee, Duk-Dong;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1727-1731
    • /
    • 2004
  • We propose an ART2 neural network-based fault diagnosis method to diagnose of sensor in the gas monitoring system. In the proposed method, using thermal modulation of operating temperature of sensor, the signal patterns are extracted from the voltage of load resistance. Also, fault classifier by ART2 NN (adaptive resonance theory 2 neural network) with uneven vigilance parameters is used for fault isolation. The performances of the proposed fault diagnosis method are shown by simulation results using real data obtained from the gas monitoring system.

  • PDF

단층변위를 이용한 단층의 총 이동량 계산법 (A New Method Calculating Total Slip of Fault with Fault Separation)

  • 황재하
    • 자원환경지질
    • /
    • 제31권6호
    • /
    • pp.547-555
    • /
    • 1998
  • A new trigonometrical method for calculating total slip (T) of faulting is presented. The parameters for the calculations are used rake of fault striation, strike and dip of fault and of index planar structure such as bedding plane. The faults are groupped into three types. The direction of plunging of fault striation is out of a range ${\pm}90^{\circ}$ to the bedding dip direction in $360^{\circ}$ system, which is groupped into the type I. Meanwhile, the case of the direction lies in the above range can be separated into two different types, type II and type III, according to relative largeness of the angles rake of fault striation and i (see text). The type II has smaller rake than angle i and the type III has larger rake than angle i. Here I propose a few equations for calculating not only total slip (T) but strike slip (L) or dip slip (S) of the faulting. The equations are adapted selectively to the types of fault mentioned before. The limitation of the method is that the equations do not fit to polyphase faulting.

  • PDF

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

IGBT 인버터를 위한 향상된 단락회로 보호기법 (An Improved Short Circuit Protection Scheme for IGBT Inverters)

  • 서범석;현동석
    • 전력전자학회논문지
    • /
    • 제3권4호
    • /
    • pp.426-436
    • /
    • 1998
  • Identification of fault current during the operation of a power semiconductor switch and activation of suitable remedial actions are important for reliable operation of power converters. A short circuit is a basic and severe fault situation in a circuit structure such as voltage source converters. This paper presents a new active protection circuit for fast and precise clamping and safe shutdown of fault currents of the IGBTs. This circuit allows operation of the IGBTs with a higher on-state gate voltage, which can thereby reduce the conduction loss in the device without compromising the short circuit protection characteristics. The operation of the circuit is studied under various conditions, considering variation of temperature, rising rate of fault current, gate voltage value, and protection circuit parameters. An evaluation of the operation of the circuit is made using IGBTs from different to confirm the effectiveness of the protection circuit.

  • PDF