• 제목/요약/키워드: Fault impedance

검색결과 384건 처리시간 0.662초

Detection of High Impedance Fault Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로 퍼지 추론 시스템을 이용한 고임피던스 고장검출)

  • 유창완
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.426-435
    • /
    • 1999
  • A high impedance fault(HIF) is one of the serious problems facing the electric utility industry today. Because of the high impedance of a downed conductor under some conditions these faults are not easily detected by over-current based protection devices and can cause fires and personal hazard. In this paper a new method for detection of HIF which uses adaptive neuro-fuzzy inference system (ANFIS) is proposed. Since arcing fault current shows different changes during high and low voltage portion of conductor voltage waveform we firstly divided one cycle of fault current into equal spanned four data windows according to the mangnitude of conductor voltage. Fast fourier transform(FFT) is applied to each data window and the frequency spectrum of current waveform are chosen asinputs of ANFIS after input selection method is preprocessed. Using staged fault and normal data ANFIS is trained to discriminate between normal and HIF status by hybrid learning algorithm. This algorithm adapted gradient descent and least square method and shows rapid convergence speed and improved convergence error. The proposed method represent good performance when applied to staged fault data and HIFLL(high impedance like load)such as arc-welder.

  • PDF

Development of a hight Impedance Fault Detection Method in Distribution Lines using Neural network (신경회로망을 이용한 배전선로 고저항 사고 검출 기법의 개발)

  • ;黃義天
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제13권2호
    • /
    • pp.212-212
    • /
    • 1999
  • This paper proposed a high impedance fault detection method using a neural network on distribution lines. The v-I characteristic curve was obtained by high impedance fault data tested in various soil conditions. High impedance fault was simulated using EMTP. The pattern of High Impedance Fault on high density pebbles was taken as the learning model, and the neural network was valuated on various soil conditions. The average values after analyzing fault current by FFT of evenr·odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method.

A Recursive Distance Relaying Algorithm Immune to Fault Resistance (고장저항의 영향을 최소화한 순환형 거리계전 알고리즘)

  • Ahn, Yong-Jin;Kang, Sang-Hee;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.259-261
    • /
    • 2001
  • An accurate digital distance relaying algorithm which is immune to the combined reactance effect of the fault resistance and the load current is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the apparent impedance, this algorithm uses iteratively the angle of an impedance deviation vector improved step by step. The impedance correction algorithm for ground faults uses a current distribution factor to compensate mutual coupling effect.

  • PDF

Analysis of fault characteristics in Catenary system for protection of AC feeding system (교류 급전시스템 보호를 위한 전차선로 고장특성 분석)

  • Jung, Ho-Sung;Park, Young;Kim, Joo-Rak;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1089-1090
    • /
    • 2006
  • This paper analyzes impedance convergence characteristics and harmonics of electric locomotives operation and fault condition. To simulate the various fault and operation condition, AT feeding system and various locomotives are modeled using PSCAD/EMTDC. Analysis shows that impedance are converged into protection area in the case of short fault between catenary and rail or catenary and feeder line but in the case of disconnection fault, impedance is rater bigger so protective relay can't detect the fault. Therefore more analysis of overload and high impedance fault caused disconnection fault is needed.

  • PDF

A New Distance Relaying Algorithm Immune to Mutual Coupling Effect and Reactance Effect for 765kV Untransposed Parallel Transmission Lines (상호결합효과와 리액턴스효과를 제거한 765kV 비연가 송전선로 보호용 거리계전 알고리즘)

  • Ahn Yong-Jin;Kang Sang-Hee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • 제54권1호
    • /
    • pp.25-30
    • /
    • 2005
  • An accurate digital distance relaying algorithm which is immune to mutual coupling effect and reactance effect of the fault resistance and the load current for the line faults in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for phase-to-ground fault and phase-to-phase short fault use a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kV untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

Operational Characteristics of a Superconducting Fault Current Limiter with an Open Core (개방철심형 고온초전도한류기의 동작 특성)

  • 이찬주;이승제;강형구;김태중;현옥배;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • 제3권1호
    • /
    • pp.40-44
    • /
    • 2001
  • Recently. the high-tc superconducting fault col-rent limiters (SFCL) are studied worldwide to be classified as a resistive type or an inductive type such as a magnetic shielding type and a inductive type. The high-tc SFCL wish an open core belongs to the magnetic shielding type SFCL. Unlike conventional magnetic shielding type SFCLS it uses the open core to reduce the mechanical vibrations and installation space, The high-tc SFCL with an open core was designed and manufactured by stacking three BSCCO 2212 tubes. It was tested in the maximum source voltage of 400 Vrms. The results such as the reduction of fault current and impedance of the SFCL are described in this paper. The results show that the fault current in the source voltage of 400 Vrms was reduced to be about 123 Apeak. about 3.9 times greater than the normal state current. Also, the impedance of the high-tc SFCL was about 9${\Omega}$ about 9 times greater than the normal state impedance. The impedance of the SFCL appears just after the fault, and its size is dependent on the source voltage. From the impedance, the inductance of the SFCL was calculated.

  • PDF

Extended Fault Location Algorithm Using the Estimated Remote Source Impedance for Parallel Transmission Lines

  • Ryu, Jeong-Hun;Kang, Sang-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2212-2219
    • /
    • 2018
  • This paper describes extended fault location algorithm using estimated remote source impedance. The method uses data only at the local end and the sequence current distribution factors for more accurate estimation. The proposed algorithm can respond to variation of the local and remote source impedance. Therefore, this method is especially useful for transmission lines interconnected to a wind farm that the source impedance varies continuously. The proposed algorithm is very insensitive to the variation in fault distance and fault resistance. The simulation results have shown the accuracy and effectiveness of the proposed algorithm.

A Study on the Detection of LIF and HIF Using Neural Network (신경회로망을 이용한 LIF 및 HIF검출에 판한 연구)

  • Choi, H.S.;Park, S.W.;Chae, J.B.;Kim, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.924-926
    • /
    • 1997
  • A high impedance fault(HIF) in a power system could be due to a downed conductor, and is a dangerous situation because the current may be too small to be detected by conventional means. In this paper, HIF(High impedance fault) and LIF(Low impedance fault) detection methods were reviewed. No single defection method can detect all electrical conditions resulting from downed conductor faults, because high impedance fault have arc phenomena, asymmetry and randomness. Neural network are well-suited for solving difficult signal processing and pattern recognition problem. This paper presents the application of artificial neural network(ANN) to detect the HIF and LIF. Test results show that the neural network was able to identify the high impedance fault by real-time operation. Furthermore, neural network was able to discriminate the HIF from the LIF.

  • PDF

Characteristics Operation of a Flux-offset Type Fault Current Limiter in a Double line-to-line Fault (2선 단락 사고 시 자속상쇄형 한류기의 동작 특성)

  • Choi, Hye-Won;Choi, Hyo-Sang
    • Journal of Advanced Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.131-135
    • /
    • 2014
  • In this paper was proposed a flux offset-type fault current limiter as means of reducing fault currents. To secure the operation reliability of a flux offset-type fault current limiter, constructed a simulation system to analyze its operation characteristics by generating a double line-to-line fault. According to the test results, the system performed stably without any impedance. However, when an accident occurred, the flux-offset of magnetic was not occurred. Because of this, any impedance occurred at circuit. It was confirmed that the impedance was low and fast to limit the fault current. At this time, the fault current limited rate was about 95%.

Increased impedance by quench at a shield layer of HTS power cable for fault current limiting function

  • Choi, Youngjun;Kim, Dongmin;Cho, Jeonwook;Sim, Kideok;Kim, Sungkyu;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • 제21권4호
    • /
    • pp.59-63
    • /
    • 2019
  • To reduce the fault current below the current capacity of a circuit breaker, researches on HTS (High Temperature Superconductor) power cables with fault current limiting (FCL) function are increasing. An FCL HTS power cable transports current with low a impedance during normal operation. Yet, it limits the fault current by an increased inductive or resistive impedance of conducting layer when quench occurs at the FCL HTS power cable by the large fault current. An inductive type FCL HTS power cable uses increased inductive impendence caused by leakage magnetic flux outside the cable core when the quench occurs at a shield layer losing the magnetic shielding effect. Therefore, it has an advantage of less resistive heating than resistive type FCL HTS power cable and temperature increase is suppressed. This paper describes an ideal circuit model for the FCL HTS power cable to investigate the effectiveness of increased inductive impedance when quench occurs at the shield layer. Then, FEM analysis is presented with a simplified model cable composed of various iron yokes to investigate the effect of the shape of yoke on the generation of the inductive impedance.