• Title/Summary/Keyword: Fault diagnosis prediction algorithm

Search Result 12, Processing Time 0.024 seconds

Fault Detection and Diagnosis of Induction Motors using LPC and DTW Methods (LPC와 DTW 기법을 이용한 유도전동기의 고장검출 및 진단)

  • Hwang, Chul-Hee;Kim, Yong-Min;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2011
  • This paper proposes an efficient two-stage fault prediction algorithm for fault detection and diagnosis of induction motors. In the first phase, we use a linear predictive coding (LPC) method to extract fault patterns. In the second phase, we use a dynamic time warping (DTW) method to match fault patterns. Experiment results using eight vibration data, which were collected from an induction motor of normal fault states with sampling frequency of 8 kHz and sampling time of 2.2 second, showed that our proposed fault prediction algorithm provides about 45% better accuracy than a conventional fault diagnosis algorithm. In addition, we implemented and tested the proposed fault prediction algorithm on a testbed system including TI's TMS320F2812 DSP that we developed.

The Development of Diesel Engine Room Fault Diagnosis System Using a Correlation Analysis Method (상관분석법에 의한 선박기관실 고장진단 시스템 개발)

  • Kim, Young-Il;Oh, Hyun-Kyung;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.253-259
    • /
    • 2006
  • There is few study which automatically diagnoses the fault from ship's monitored data. The bigger control and monitoring system is. the more important fault diagnosis and maintenance is to reduce damage caused by system fault. This paper proposes fault diagnosis system using a correlation analysis algorithm which is able to diagnose and forecast the fault from monitored data and is composed of fault detection knowledge base and fault diagnosis knowledge base. For all kinds of ship's engine room monitored data are classified with combustion subsystem, heat exchange subsystem and electric motor and pump subsystem, To verify capability of fault detection, diagnosis and prediction, FMS(Fault Management System) is developed by C++. Simulation by FMS is carried out with population data set made by the log book data of 2 months duration from a large full container ship of H shipping company.

The Development of Diesel Engine Room Fault Diagnosis SystemUsing a Correlation Analysis Method (상관분석법에 의한 선박기관실 고장진단 시스템 개발)

  • Kim, Young-Il;Oh, Hyun-Gyeong;Cheon, Hang-Chun;Yu, Yung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.251-256
    • /
    • 2005
  • There is few study which automatically diagnose the fault from ship's monitored signal. The bigger control and monitoring system is, the more important fault diagnosis and maintenance is to reduce damage brought forth by system fault. This paper proposes fault diagnosis system using a correlation analysis algorithm which is able to diagnose and forecast the fault and is composed to fault detection knowledge base and fault diagnosis knowledge base. For this all kinds of ship's engine room monitored data are classified with combustion subsystem, heat exchange subsystem and electric motor and pump subsystem by analyzing ship's operation data. To verifying capability of fault detection, diagnosis and prediction, Fault Management System(FMS) is developed by C++. Simulation experiment by FMS is carried out with population data set made by log book data of 2 months duration from a large full container ship of H shipping company.

  • PDF

Fault Diagnosis Algorithm of Electronic Valve using CNN-based Normalized Lissajous Curve (CNN기반 정규화 리사주 도형을 이용한 전자식 밸브 고장진단알고리즘)

  • Park, Seong-Mi;Ko, Jae-Ha;Song, Sung-Geun;Park, Sung-Jun;Son, Nam Rye
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.825-833
    • /
    • 2020
  • Currently, the K-Water uses various valves that can be remotely controlled for optimal water management. Valve system fault can be classified into rotor defects, stator defects, bearing defects, and gear defects of induction motors. If the valve cannot be operated due to a gear fault, the water management operation can be greatly affected. For effective water management, there is an urgent need for preemptive repairs to determine whether gear is damaged through failure prediction diagnosis.. Recently, deep learning algorithms are being applied for valve failure diagnosis. However, the method currently applied has a disadvantage of attaching a vibration sensor to the valve. In this paper, propose a new algorithm to determine whether a fault exists using a convolutional neural network (CNN) based on the voltage and current information of the valve without additional sensor mounting. In particular, a normalized Lisasjous diagram was used to maximize the fault classification performance in the CNN-based diagnostic system.

Fault Diagnosis of Induction Motor using Linear Predictive Coding and Deep Neural Network (LPC와 DNN을 결합한 유도전동기 고장진단)

  • Ryu, Jin Won;Park, Min Su;Kim, Nam Kyu;Chong, Ui Pil;Lee, Jung Chul
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.11
    • /
    • pp.1811-1819
    • /
    • 2017
  • As the induction motor is the core production equipment of the industry, it is necessary to construct a fault prediction and diagnosis system through continuous monitoring. Many researches have been conducted on motor fault diagnosis algorithm based on signal processing techniques using Fourier transform, neural networks, and fuzzy inference techniques. In this paper, we propose a fault diagnosis method of induction motor using LPC and DNN. To evaluate the performance of the proposed method, the fault diagnosis was carried out using the vibration data of the induction motor in steady state and simulated various fault conditions. Experimental results show that the learning time of our proposed method and the conventional spectrum+DNN method is 139 seconds and 974 seconds each executed on the experimental PC, and our method reduces execution time by 1/8 compared with conventional method. And the success rate of the proposed method is 98.08%, which is similar to 99.54% of the conventional method.

Development of smart car intelligent wheel hub bearing embedded system using predictive diagnosis algorithm

  • Sam-Taek Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.1-8
    • /
    • 2023
  • If there is a defect in the wheel bearing, which is a major part of the car, it can cause problems such as traffic accidents. In order to solve this problem, big data is collected and monitoring is conducted to provide early information on the presence or absence of wheel bearing failure and type of failure through predictive diagnosis and management technology. System development is needed. In this paper, to implement such an intelligent wheel hub bearing maintenance system, we develop an embedded system equipped with sensors for monitoring reliability and soundness and algorithms for predictive diagnosis. The algorithm used acquires vibration signals from acceleration sensors installed in wheel bearings and can predict and diagnose failures through big data technology through signal processing techniques, fault frequency analysis, and health characteristic parameter definition. The implemented algorithm applies a stable signal extraction algorithm that can minimize vibration frequency components and maximize vibration components occurring in wheel bearings. In noise removal using a filter, an artificial intelligence-based soundness extraction algorithm is applied, and FFT is applied. The fault frequency was analyzed and the fault was diagnosed by extracting fault characteristic factors. The performance target of this system was over 12,800 ODR, and the target was met through test results.

Rotating machinery fault diagnosis method on prediction and classification of vibration signal (진동신호 특성 예측 및 분류를 통한 회전체 고장진단 방법)

  • Kim, Donghwan;Sohn, Seokman;Kim, Yeonwhan;Bae, Yongchae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.90-93
    • /
    • 2014
  • In this paper, we have developed a new fault detection method based on vibration signal for rotor machinery. Generally, many methods related to detection of rotor fault exist and more advanced methods are continuously developing past several years. However, there are some problems with existing methods. Oftentimes, the accuracy of fault detection is affected by vibration signal change due to change of operating environment since the diagnostic model for rotor machinery is built by the data obtained from the system. To settle a this problems, we build a rotor diagnostic model by using feature residual based on vibration signal. To prove the algorithm's performance, a comparison between proposed method and the most used method on the rotor machinery was conducted. The experimental results demonstrate that the new approach can enhance and keeps the accuracy of fault detection exactly although the algorithm was applied to various systems.

  • PDF

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.