• Title/Summary/Keyword: Fault Tolerant Control

Search Result 298, Processing Time 0.024 seconds

Unscented Kalman Filter For Aircraft Sensor Fault Detection

  • Kim, In-Jung;Kim, You-Dan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2335-2339
    • /
    • 2003
  • To prevent the critical situation due to the fault in the aircraft sensor system, the fault tolerant system with triple or quadruple redundancy can be made. However, if the faults are occurred in two or more than sensors simultaneously, the conventional fault detection process, such as cross-channel monitoring, may give the wrong fault alarm. For this case, we can detect the fault by estimating the state vector based on the system dynamics model, which is nonlinear for aircraft. In this paper, we propose the unscented Kalman filter to estimate the nonlinear state vector. This filter utilizes the so-called unscented transformation of sigma points featured the statistical characteristics of the random variable. For verification, we perform the simulations for F-16 aircraft with accelerometers, gyros, GPS and air data system.

  • PDF

Calculation of Distributed Magnetic Flux Density under the Stator-Turn Fault Condition

  • Kim, Kyung-Tae;Hur, Jin;Kim, Byeong-Woo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.552-557
    • /
    • 2013
  • This paper proposed an analytical model for the distributed magnetic field analysis of interior permanent magnet-type blush-less direct current motors under the stator-turn fault condition using the winding function theory. Stator-turn faults cause significant changes in electric and magnetic characteristic. Therefore, many studies on stator-turn faults have been performed by simulation of the finite element method because of its non-linear characteristic. However, this is difficult to apply to on-line fault detection systems because the processing time of the finite element method is very long. Fault-tolerant control systems require diagnostic methods that have simple processing systems and can produce accurate information. Thus analytical modeling of a stator-turn fault has been performed using the winding function theory, and the distributed magnetic characteristics have been analyzed under the fault condition. The proposed analytical model was verified using the finite element method.

Reconfiguration of Redundant Joints for Fault Tolerance of a Servo Manipulator (여유 자유도를 갖는 서보 매니퓰레이터의 내고장 제어를 위한 재형상 기법)

  • 박병석;안성호;윤지섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.899-906
    • /
    • 2004
  • In this paper, fault tolerant algorithm is presented for a servo manipulator system. For fault tolerance of a servo manipulator system, reconfiguration algorithm accommodating a motor's failure has been presented. The algorithm considers a transport's degree of freedoms as redundant joints of a servo manipulator. The reconfiguration algorithm recovers the end effector's motion in spite of one motor's failure A modified pseudo inverse redistribution method has been proposed for the reconfiguration algorithm. Numerical examples and hardware tests have been presented to verify the proposed methods.

Study on the Quantification of Failure Rate for Safety-critical Fault-tolerant USN System (안전필수 결함허용 USN시스템의 고장률정량화에 관한 연구)

  • Shin, Duc-Ko;Shin, Kyung-Ho;Jo, Hyun-Jeong;Song, Yong-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1414-1419
    • /
    • 2011
  • In this paper we study the modeling to quantitatively assess the failure rate of USN system designed for fault-tolerant architecture, aiming at applying the world's best domestic USN technology to safety-critical railways. In order to apply the USN system to the safety-critical field like a train control sector that the failures of controllers may cause severe railway accidents such as train collision and derailment, the quantitative reliability and safety evaluation recommended in IEC 62278 must be preceded. We also develop the evaluation model for overall system failure rate for the distributed network structure, which is the characteristics of USN system. Especially, we allocate reliability targets to component units, and present an availability evaluation plan through the plan on the quantitative achievement of failure rate for sensor nodes, gateways, radio-communication network and servers, along with the failure rate model of the overall system considering network operational features.

  • PDF

Adaptive Fault-tolerant Multistage Interconnection Network (적응적 결함-허용 다단계 상호연결망)

  • 김금호;김영만;배은호;윤성대
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.199-202
    • /
    • 2001
  • In this paper, we proposed and analyzed a new class of irregular fault-tolerant multistage interconnection network named as Extended-QT(Quad Tree) network. E-QT network is extended QT network. A unique path MIN usually is low hardware complexity and control algorithm. So we proposes a class of multipath MIN which are obtained by adding self-loop auxiliary links at the a1l stages in QT(Quad Tree) networks so that they can provide more paths between each source-destination pair. The routing of proposed structure is adaptived and is based by a routing tag. Starting with the routing tag for the minimum path between a given source-destination pair, routing algorithm uses a set of rules to select switches and modify routing tag. Trying the self-loop auxiliary link when both of the output links are unavailable. If the trying is failure, the packet discard. In simulation, an index of performance called reliability and cost are introduced to compare different kinds of MINs. As a result, the prouosed MINs have better capacity than 07 networks.

  • PDF

Fault Tolerant Homopolar Magnetic Bearings with Flux Coupling (자기연성을 이용한 동극형 자기베어링의 고장강건 제어)

  • Na, Uhn-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.83-92
    • /
    • 2008
  • This paper develops the theory for a fault-tolerant, permanent magnet biased, homopolar magnetic bearing. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a novel distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed.

A Study on Fault Tolerant Digital Controllers for Programmable Electronic Interlocking System(II) (전자연동장치의 안전성 활동에 관한 연구(II))

  • Park, Jae-Young;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.667-673
    • /
    • 2006
  • Programmable electronic interlocking system plays key role in railway operation and is closely related to railway accidents, in which the programmable electronic controller of interlocking system may become sources. Redundant digital controllers are adopted as the interlocking controllers to prevent the accidents from the controllers being out of order. The redundant digital controllers being fault tolerant are realized through dual or triplex controllers. In this paper, we calculated safety and availability of the redundant digital controllers using Markov models, demonstrated key part to determine the availability ana the safety.

Double mastering network for train communication (철도 차량용 통신 네트워트의 이중 마스터 운용 기법)

  • Ryou, Heung-Reol;Cho, Young-Jo;Oh, Sang-Rok;Hong, Dae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.355-358
    • /
    • 1998
  • Train control and monitoring system for the railway train requires a reliable real-time communication network. The system have various functions, diagnostics, passenger informations, and fault-tolerant controls. For this system, an international standard called TCN(Train Communication Network) is proposed by IEC and the train industries. The TCN is composed of two layers, wire train bus(WTB) and multifunction vehicle bus(MVB). This paper evaluates the performance of the proposed WTB and modified WTB. And computer simulations are performed. The evaluated results can be used for the fault tolerant network in the railway train system.

  • PDF

Design of a Fuzzy Model Based Reduced Order Unknown Input Observer for a Class of Nonlinear Systems (비선형계를 위한 퍼지모델 기반 감소차수 미지입력관측자 설계)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1247-1253
    • /
    • 2008
  • A design method of a T-S fuzzy model based reduced order nonlinear unknown input observer(NUIO) is presented. The fuzzy NUIO is designed based on the parallel distributed compensation(PDC) concept. It consists of a number of the linear UIOs, each of which is designed for each local linear model in the T-S fuzzy model of a class of nonlinear systems. The fuzzy NUIO provides not only the state estimates insensitive to the unknown inputs, for example, disturbances and faults etc., but also the estimates of the unknown inputs. Therefore, It can be employed in the state feedback control and disturbance rejection control of a class of nonlinear systems with unknown disturbances. It also applied to the robust residual generation for the fault detection and isolation systems and to the design of fault tolerant control systems. As an example, the NUIO is applied to an inverted pendulum system to show the state and disturbance estimation performance and to illustrate the fuzzy reduced order NUIO design method.

A Study on the Neutral Point Potential Variation under Open-Circuit Fault of Three-Level NPC Inverter (3레벨 NPC 인버터 개방성 고장 시 중성점 전압변동에 관한 연구)

  • Park, Jong-Je;Park, Byoung-Gun;Ha, Dong-Hyun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.333-342
    • /
    • 2009
  • Three-level Diode Clamped Multilevel Inverter, generally known as Neutral-Point-Clamped (NPC) Inverter, has an inherent problem causing Neutral Point (NP) potential variation. Until now, in many literatures NP potential problem has been investigated and lots of solutions have also been proposed. However, under fault and fault tolerant control, distinctive feature for NP potential variation problem was rarely published from the standpoint of reliability. In this paper, NP potential is analytically investigated both normal and faulty conditions under carrier based PWM. Subsequently, relation between fault detection time and size of capacitor is analyzed. This information is explored by simulation and experiment results, which contribute to enhance the reliability of inverter system.