• Title/Summary/Keyword: Fault Tolerant Control

Search Result 298, Processing Time 0.023 seconds

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Control Surface Fault Detection of the DURUMI-II by Real-Time System Identification (실시간 시스템 식별에 의한 두루미-II 조종면 고장진단)

  • Lee, Hwan;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2007
  • The goal of this paper is to represent a technique of fault detection for the control surface as a base research of the fault tolerant control system for safety improvement of UAV. The real-time system identification based on the recursive Fourier Transform was implemented for the fault detection of the control surface and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than normal condition.

  • PDF

Fault Tolerant Control with Variable Time Weight (가변시간비중을 갖는 내고장성 제어)

  • Hee Gyoo Lee;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.22-30
    • /
    • 1992
  • A redundant control scheme which can maintain its tracking capability in the case of a controller failure is proposed for the industrial applications which need high reliability with fault-tolerance. It consists of two identical controllers and a switching mechanism which includes failure detection and reconfiguration algorithm. The new detection method against controller failure using fuzzy logic enables the detection of controller failures without failure assumptions through the instability of the failed controller. The failed controller is smoothly removed from the control loop by reducing time weight of the failed controller.

  • PDF

Design of Fault-Tolerant Inductive Position Sensor (고장 허용 유도형 위치 센서 설계)

  • Paek, Sung-Kuk;Park, Byeong-Cheol;Noh, Myoung-Gyu D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.232-239
    • /
    • 2008
  • The position sensors used in a magnetic bearing system are desirable to provide some degree of fault-tolerance as the rotor position is necessary for the feedback control to overcome the open-loop instability. In this paper, we propose an inductive position sensor that can cope with a partial fault in the sensor. The sensor has multiple poles which can be combined to sense the in-plane motion of the rotor. When a high-frequency voltage signal drives each pole of the sensor, the resulting current in the sensor coil contains information regarding the rotor position. The signal processing circuit of the sensor extracts this position information. In this paper, we used the magnetic circuit model of the sensor that shows the analytical relationship between the sensor output and the rotor motion. The multi-polar structure of the sensor makes it possible to introduce redundancy which can be exploited for fault-tolerant operation. The proposed sensor is applied to a magnetically levitated turbo-molecular vacuum pump. Experimental results validate the fault-tolerance algorithm.

Disturbance observer based anti-disturbance fault tolerant control for flexible satellites

  • Yadegari, Hamed;Khouane, Boulanouar;Yukai, Zhu;Chao, Han
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.4
    • /
    • pp.459-475
    • /
    • 2018
  • In the field of aerospace engineering, accurate control of a spacecraft's orientation is often very important to mission success. Therefore, attitude control is a technically plentiful and extensively studied subject in controls literature during recent decades. This investigation of spacecraft attitude control is assumed to address two important aspects of the problem solutions. One sliding mode anti-disturbance control for utilization of faulty actuator components and another one disturbance observer based control to improve the pointing accuracy in the absence of anti-vibration equipment for the elastic appendages like a solar panel. Simultaneous occurrence of vibration due to flexible appendages and reaction degradation due to failure in attitude actuators complicates this case. The advantage of this method is acquisition proper control by the combination of disturbance observer and sliding mode compensation that form a fault tolerant control for the concerned satellite attitude control system. Furthermore, the proposed composite method indicates that occurrence the failure in actuators and even elastic solar panel vibration effect may be handled directly without reconfiguring the control components or providing piezoelectric devices. It's noteworthy, attitude quaternion and angular velocity commands are robustly tracked via controllers to become inclined to zero.

A Six Pole Permanent Magnet Biased Homopolar Magnetic Bearing with Fault-Tolerant Capability

  • Uhn Joo Na
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_1
    • /
    • pp.231-238
    • /
    • 2023
  • This paper develops the theory for a novel fault-tolerant, permanent magnet biased, 6-active-pole, homopolar magnetic bearing. The Lagrange Multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrices for the failed bearing. some numerical examples of distribution matrices are provided to illustrate the new theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events (up to any combination of 3 coils failed for the 6 pole magnetic bearing) while currents and fluxes change significantly. The overall load capacity of the bearing actuator is reduced as coils fail. The same magnetic forces are then preserved up to the load capacity of the failed bearing.

A Study on Maneuvering Control Algorithm Based on All-wheel Independent Driving and Steering Control for Special Purpose 6WD/6WS Vehicles (전차륜 독립휠 구동 및 조향 제어 기반 특수목적용 6WD/6WS 차량의 주행제어 알고리즘 연구)

  • Lee, Daeok;Yeo, Seungtai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.240-249
    • /
    • 2013
  • This paper discusses the maneuvering control algorithm based on all-wheel independent driving and steering control techniques for special purpose 6WD/WS vehicles. The maneuvering control algorithms considering superior dynamic characteristics of high power in-wheel motors and independent steering system are designed to perform driving, steering, vehicle stability, and fault tolerant control. The maneuvering controller applies sliding and optimal control theories considering optimal torque distribution and friction circle related to the vertical tire force. The fault tolerant control algorithm is applied to obtain the similar maneuverability to that of the non-faulty vehicle. The simulations using the Matlab/Simulink dynamics model and experiments using HIL simulator mounting the real controllers with the designed control algorithms prove the improved performances in terms of vehicle stability and maneuverability.

Operation and performability analysis of modular cells (모듈러 셀의 운영과 수행성 해석)

  • Heo, Gyeon;Jang, Seok-Ho;Jung, Hyun-Ho;Lee, Sang-Moon;Woo, Gwang-Bang;Kim, Hak-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1263-1266
    • /
    • 1997
  • In a fault-tolerant modern manufacturing systms characterized by the configuration, in which automated redundant machines prone to unexpected failures are interconnected with other complex subsystems such as AGV's, robots, computer control systems to produce complete parts, faulures together with repairs and reconfigurations should be considered as the three basic events to be modeled for computing the performance of manufacturing systems. In this papre, transient analysis is applied to modular cell manufacturing systems form a performability viewpoint whose modeling adantage is that various performanc e measures can be evaluated compositely in the context of application. The hypothertical modular cells are modeled firstly with hybrid decomposition method and availability measures as special cases of performability are computed and comments on performabililty modeling analysis are mentioned.

  • PDF

An availability analysis of switching control system with warm standby fault tolerant architecture (Warm standby 고장김내 구조를 지원하는 교환 제어 시스템에서의 가동률 분석)

  • 송광석;여환근;한창호;문태수;이광배;김현욱;윤충화
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.1989-2002
    • /
    • 1996
  • In this paper, we describe several warm standby fault-tolerant models and their operation methods applicable to telephone switching control systems which have dual module structure and need high availability. Unavailabilities of the system implemented by four different methods for each model are computed by using the Markov state model, and then are compared for system performance evaluation. As the results ofsimulations, the warm standby model with triple processors is best in the aspect of data loss, while in most cases the warm standby model with doble processors based on no standby check method provides the highest system avaiability. Periodic changeover increases the system unavailability, but the preriodic standby check on standby module decreases the system unavailability of warm standby model with a single processor and with double processors. On the other hands, the variationas of warm standby model with a single processor and with double processors. On the other hand, the variations of data recovery time and personnel recovery rate have little effect on the system unavailtability.

  • PDF

K-connected, (K+1)-covered Fault-tolerant Topology Control Protocol for Wireless Sensor Network (무선 센서 망을 위한 K-연결 (K+1)-감지도 고장 감내 위상 제어 프로토콜)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1133-1141
    • /
    • 2009
  • In this paper, we present a distributed fault-tolerant topology control protocol that configure a wireless sensor network to achieve k-connectivity and (k+1)-coverage. One fundamental issue in sensor networks is to maintain both sensing coverage and network connectivity in order to support different applications and environments, while some least active nodes are on duty. Topology control algorithms have been proposed to maintain network connectivity while improving energy efficiency and increasing network capacity. However, by reducing the number of links in the network, topology control algorithms actually decrease the degree of routing redundancy. Although the protocols for resolving such a problem while maintaining sensing coverage were proposed, they requires accurate location information to check the coverage, and most of active sensors in the constructed topology maintain 2k-connectivity when they keep k-coverage. We propose the fault-tolerant topology control protocol that is based on the theorem that k-connectivity implies (k+1)-coverage when the sensing range is at two times the transmission range. The proposed distributed algorithm does not need accurate location information, the complexity is O(1). We demonstrate the capability of the proposed protocol to provide guaranteed connectivity and coverage, through both geometric analysis and extensive simulation.