• Title/Summary/Keyword: Fault Code

Search Result 124, Processing Time 0.025 seconds

Distribution of near-fault input energy over the height of RC frame structures and its formulation

  • Taner Ucar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Energy-based seismic design and evaluation methods are promising to be involved in the next generation design codes. Accordingly, determining the distribution of earthquake input energy demand among floor levels is quite imperative in order to develop an energy-based seismic design procedure. In this paper, peak floor input energy demands are achieved from relative input energy response histories of several reinforced concrete (RC) frames. A set of 22 horizontal acceleration histories selected from recorded near-fault earthquakes and scaled in time domain to be compatible with the elastic acceleration design spectra of Turkish Seismic Design Code are used in time history analyses. The distribution of the computed input energy per mass values and the arithmetic means through the height of the considered RC frames are presented as a result. It is found that spatial distribution of input energy per mass is highly affected by the number of stories. Very practical yet consistent formulation of distributing the total input energy to story levels is achieved, as a most important contribution of the study.

The Flow Analysis of Arc in LG Hybrid Interrupter Using PHOENICS Code (PHOENICS Code를 이용한 자력팽창 소호부 내 아크유동해석)

  • Lee, J.C.;Lee, B.W.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.44-46
    • /
    • 2001
  • This paper describes the use of the PHOENICS CFD package for the simulation of the high-current period of the arcing process in a hybrid rotating arc/auto expansion by interrupter. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. This paper is divided into three main sections. The first gives a brief overview of the interrupter. The second section gives a full description of the methods used in the calculation. The final section presents some sample results for the hybrid interrupter.

  • PDF

A Study of the Preventive Diagnostic Algorithm of Gas in Oil for Power Transformer (가스분석을 이용한 변압기의 이상진단 알고리즘 연구)

  • Choi, I.H.;Kweon, D.J.;Jung, G.J.;You, Y.P.;Sun, J.H.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1903-1905
    • /
    • 2000
  • Power transformers have a tendency of ultra-high voltage capacity as power demand increases day after day KEPCO also will have plan to supply transmission power from 345KV to 765KV in the early of 2000. Therefore, the fault by insulation destruction gives rise to large area of power failure in huge capacity transformers. On-line predictive diagnostics is very important in power transformers because of economic loss and its spreading effect. This study presents the algorithm for transformer oil analysis used KEPCO code, IEC code, gas pattern method and Dornenburg & Roger Ratio method. We also describe the MMI display of expert system programmed by Element Expert Tool(Neuron Data Inc.).

  • PDF

Fine-Grain Real-Time Code Scheduling for VLIW Architecture

  • Chung, Tai M.;Hwang, Dae J.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • In safety critical hard real-time systems, a timing fault may yield catastrophic results. In order to eliminate the timing faults from the fast responsive real-time control systems, it is necessary to schedule a code based on high precision timing analysis. Further, the schedulability enhancement by having multiple processors is of wide spread interest. However, although an instruction level parallel processing is quite effective to improve the schedulability of such a system, none of the real-time applications employ instruction level parallel scheduling techniques because most of the real-time scheduling models have not been designed for fine-grain execution. In this paper, we present a timing constraint model specifying high precision timing constraints, and a practical approach for constructing static schedules for a VLIW execution model. The new model and analysis can guarantee timing accuracy to within a single machine clock cycle.

  • PDF

Fine Grain Real-Time Code Scheduling Using an Adaptive Genetic Algorithm (적합 유전자 알고리즘을 이용한 실시간 코드 스케쥴링)

  • Chung, Tai-Myoung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1481-1494
    • /
    • 1997
  • In hard real-time systems, a timing fault may yield catastrophic results. Dynamic scheduling provides the flexibility to compensate for unexpected events at runtime; however, scheduling overhead at runtime is relatively large, constraining both the accuracy of the timing and the complexity of the scheduling analysis. In contrast, static scheduling need not have any runtime overhead. Thus, it has the potential to guarantee the precise time at which each instruction implementing a control action will execute. This paper presents a new approach to the problem of analyzing high-level language code, augmented by arbitrary before and after timing constraints, to provide a valid static schedule. Our technique is based on instruction-level complier code scheduling and timing analysis, and can ensure the timing of control operations to within a single instruction clock cycle. Because the search space for a valid static schedule is very large, a novel adaptive genetic search algorithm was developed.

  • PDF

A Study on the Reliability of Failure Diagnosis Methods of Oil Filled Transformer using Actual Dissolved Gas Concentration (유중가스농도를 이용한 유입식 변압기 고장진단 기법의 신뢰성에 관한 연구)

  • Park, Jin-Yeub;Chin, Soo-Hwan;Park, In-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.114-119
    • /
    • 2011
  • Large Power transformer is a complex and critical component of power plant and consists of cellulosic paper, insulation oil, core, coil etc. Insulation materials of transformer and related equipment break down to liberate dissolved gas due to corona, partial discharge, pyrolysis or thermal decomposition. The dissolved gas kinds can be related to the type of electrical faults, and the rate of gas generation can indicate the severity of the fault. The identities of gases being generated are using very useful to decide the condition of transformation status. Therefore dissolved gas analysis is one of the best condition monitoring methods for power transformer. Also, on-line multi-gas analyzer has been developed and installed to monitor the condition of critical transformers. Rogers method, IEC method, key gas method and Duval Triangle method are used to failure diagnosis typically, and those methods are using the ratio or kinds of dissolved gas to evaluate the condition of transformer. This paper analyzes the reliability of transformer diagnostic methods considering actual dissolved gas concentration. Fault diagnosis is performed based on the dissolved gas of five transformers which experienced various fault respectively in the field, and the diagnosis result is compared with the actual off-line fault analysis. In this comparison result, Diagnostic methods using dissolved gas ratio like Rogers method, IEC method are sometimes fall outside the ratio code and no diagnosis but Duval triangle method and Key gas method is correct comparatively.

Crack Propagation in Earth Embankment Subjected to Fault Movement (단층 운동시 댐 파괴 거동 해석)

  • 손익준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.3-67
    • /
    • 1988
  • Model studies on the response of homgeneous earth embankment dams subjected to strike-slip fault movement have been penomed via centrifuge and finite element analysis. The centrifuge model tests have shown that crack development in earth embankment experiences two major patters: shear failure deep inside the embankment and tension failure near the surface. The shear rupture zone develops from the base level and propagates upward continuously in the transverse direction but allows no open leakage chnnel. The open tensile cracks develop near the surface of the embankment, but they disappear deep in the embankment. The functional relationship has been developed based on the results of the centrifuge model tests incorporating tile variables of amount of fault movement, embankment geometry, and crack propagation extent in earth des. This set of information can be used as a guide line to evaluate a "transient" safety of the duaged embankment subjected to strike-slip fault movement. The finite element analysis has supplemented the additional expluations on crack development behavior identified from the results of the centrifuge model tests. The bounding surface time-independent plasticity soil model was employed in the numerical analysis. Due to the assumption of continuum in the current version of the 3-D FEM code, the prediction of the soil structure response beyond the failure condition was not quantitatively accurate. However, the fundamental mechanism of crack development was qualitatively evaluated based on the stress analysis for the deformed soil elements of the damaged earth embankment. The tensile failure zone is identified when the minor principal stress of the deformed soil elements less than zero. The shear failure zone is identified when the stress state of the deformed soil elements is at the point where the critical state line intersects the bounding surface.g surface.

  • PDF

Test of Fault Detection to Solar-Light Module Using UAV Based Thermal Infrared Camera (UAV 기반 열적외선 카메라를 이용한 태양광 모듈 고장진단 실험)

  • LEE, Geun-Sang;LEE, Jong-Jo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.106-117
    • /
    • 2016
  • Recently, solar power plants have spread widely as part of the transition to greater environmental protection and renewable energy. Therefore, regular solar plant inspection is necessary to efficiently manage solar-light modules. This study implemented a test that can detect solar-light module faults using an UAV based thermal infrared camera and GIS spatial analysis. First, images were taken using fixed UAV and an RGB camera, then orthomosaic images were created using Pix4D SW. We constructed solar-light module layers from the orthomosaic images and inputted the module layer code. Rubber covers were installed in the solar-light module to detect solar-light module faults. The mean temperature of each solar-light module can be calculated using the Zonalmean function based on temperature information from the UAV thermal camera and solar-light module layer. Finally, locations of solar-light modules of more than $37^{\circ}C$ and those with rubber covers can be extracted automatically using GIS spatial analysis and analyzed specifically using the solar-light module's identifying code.

Real-time Faulty Node Detection scheme in Naval Distributed Control Networks using BCH codes (BCH 코드를 이용한 함정 분산 제어망을 위한 실시간 고장 노드 탐지 기법)

  • Noh, Dong-Hee;Kim, Dong-Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.20-28
    • /
    • 2014
  • This paper proposes a faulty node detection scheme that performs collective monitoring of a distributed networked control systems using interval weighting factor. The algorithm is designed to observe every node's behavior collectively based on the pseudo-random Bose-Chaudhuri-Hocquenghem (BCH) code. Each node sends a single BCH bit simultaneously as a replacement for the cyclic redundancy check (CRC) code. The fault judgement is performed by performing sequential check of observed detected error to guarantee detection accuracy. This scheme can be used for detecting and preventing serious damage caused by node failure. Simulation results show that the fault judgement based on decision pattern gives comprehensive summary of suspected faulty node.

Strong ground motion characteristics of the 2011 Van Earthquake of Turkey: Implications of seismological aspects on engineering parameters

  • Beyen, Kemal;Tanircan, Gulum
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1363-1386
    • /
    • 2015
  • The October 23 2011 Van Earthquake is studied from an earthquake engineering point of view. Strong ground motion processing was performed to investigate features of the earthquake source, forward directivity effects during the rupture process as well as local site effects. Strong motion characteristics were investigated in terms of peak ground motion and spectral acceleration values. Directiviy effects were discussed in detail via elastic response spectra and wide band spectograms to see the high frequency energy distributions. Source parameters and slip distribution results of the earthquake which had been proposed by different researchers were summarized. Influence of the source parameters on structural response were shown by comparing elastic response spectra of Muradiye synthetic records which were performed by broadband strong motion simulations of the earthquake. It has been emphasized that characteristics of the earthquake rupture dynamics and their effects on structural design might be investigated from a multidisciplinary point of view. Seismotectonic calculations (e.g., slip pattern, rupture velocity) may be extended relating different engineering parameters (e.g., interstorey drifts, spectral accelerations) across different disciplines while using code based seismic design approaches. Current state of the art building codes still far from fully reflecting earthquake source related parameters into design rules. Some of those deficiencies and recent efforts to overcome these problems were also mentioned. Next generation ground motion prediction equations (GMPEs) may be incorporated with certain site categories for site effects. Likewise in the 2011 Van Earthquake, Reverse/Oblique earthquakes indicate that GMPEs need to be feasible to a wider range of magnitudes and distances in engineering practice. Due to the reverse faulting with large slip and dip angles, vertical displacements along with directivity and fault normal effects might significantly affect the engineering structures. Main reason of excessive damage in the town of Erciş can be attributed to these factors. Such effects should be considered in advance through the establishment of vertical design spectra and effects might be incorporated in the available GMPEs.