• Title/Summary/Keyword: Fatigue properties

Search Result 1,123, Processing Time 0.029 seconds

고강도 및 파괴인성을 갖는 AI-Li-Cu 합금 개발

  • Kim, Song-Hui;Yun, Yeo-Beom;Hwang, Yeong-Hwa;Choe, Chang-U;Hong, Jun-Pyo;Lee, Eung-Jo
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.253-260
    • /
    • 1993
  • High strength and fracture toughness of Al-Li-Cu alloy(2090 Al alloy) have been achieved by the improvement of melting and casting, extrusion and heat treatment techniques. To establish the sucessful process for semi-industrial scale ingot(20Kg) the following areas have been investigated: (1) Improvement of melting and casting techniques for ingot by introducing atmospheric modifications, vacuum and rotary degassing, and deslagging. (2) The effect of heat treatment on mechanical properties (3) Mechanical characterization by tensile test, fracture toughness test and fatigue crack propagation test. High mechanical properties were found to be intimately related with ingot soundness. Tensile strength of final products varied from 534MPa to 566MPa in peak aged condition while elongation/ductility ranged from 9.0% to 11.9%. From the fracture toughness test with using compact tensile specimen, plane strain fracture toughness($K_{Ic}$) appeared to be 39MPa${\surd}$m in peak aged condition and 23MPa${\surd}$ m in underaged condition. When load ratios of 0.1, 0.3 and 0.5 were given ${\Delta}K_{th}$ was 6.0MPa${\surd}$ m, 5.3MPa${\surd}$ m and 4.3MPa${\surd}$ m respectively.

  • PDF

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

Corrosion-Resistant High Strength S20C Element Riveted Al5052-SPFC980Y Steel Joints by Resistance Element Spot Welding (S20C 리벳된 Al5052와 SPFC980Y 강철 resistance-element 점용접 접합부의 미세조직 발달 및 고강도-부식 저항 특성)

  • Baek, Seung-Yeop;Song, Jong-Ho;Park, Seung-Youn;Song, Il-Jong;Lee, Hyun-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.794-801
    • /
    • 2021
  • This study examined the mechanical strength and corrosion resistance of a dissimilar joint with an aluminum alloy and steel by resistance element spot welding. SPFC980 steels and Al5052 alloys were applied as the base materials. S20C steels were assembled on Al5052 for the riveting element before the electric resistance welding process. The SPFC980-S20C riveted Al5052 was welded at a 6.5 kA current and 250 kgf/㎠. As a result, the engraved S20C elements formed unstable nuggets after the spot welding processes. In contrast, in the embossed S20C elements, exceptional mechanical properties, such as robust corrosion resistance and fatigue resistance, were obtained by structurally sound joints. The correlation between the microstructure and mechanical properties were examined by microstructural investigations and FEM simulations. The corrosion reliability of element spot-welded SPFC980-Al5052 dissimilar joints was investigated systematically.

Effects of Herbal Sports Drinks with Omija, Maesil and Molasses on the Endurance and Energy Metabolites of Experimental Animals (오미자, 매실 및 당밀을 함유하는 한방스포츠음료가 실험동물의 지구력과 에너지 대사 성분에 미치는 영향)

  • Bachri, Saiful;Woo, Mi-Hee;Lee, Hang-Woo;Choi, Jong-Won;Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.219-227
    • /
    • 2009
  • The antifatigue and endurance promoting properties of two Korean medicinal herb extracts and molasses with various mineral components were studied by evaluating forced-swimming capacity and biochemical parameters in ICR mice. The treatment groups were orally administered mineral beverages which were contained 6% sugar with the mixture of Maesil (Prunus mume fruit) extracts, Omija (Schisandra chinensis fruit) extracts and molasses for 4 weeks. The exercised forced-swimming tests were conducted after 28 days of beverage supplementation. The swimming times to exhaustion were longer 1.5${\sim}$2 times in group 6 and group 10 than control goup (Control: 93.2${\pm}$10.4 sec; Beverage 6; 190.8${\pm}$25.6 sec, Beverage 10; 173.6${\pm}$21.8 sec; p<0.05). Moreover, the activity of hexokinase (Control: 5.23${\pm}$0.38 ${\mu}mol$l/g tissue; Beverage 6: 5.99${\pm}$0.18 ${\mu}mol$/g tissue, Beverage 10: 6.13${\pm}$0.25 ${\mu}mol$/g tissue, p<0.05) and citrate synthase (control: 42.9${\pm}$1.87 ${\mu}mol$/g tissue; Beverage 6: 56.8${\pm}$3.98 ${\mu}mol$/g tissue, Beverage 10; 59.5${\pm}$3.09 ${\mu}mol$/g tissue, p<0.05) were also significantly higher than those of control group. Even if the treatment groups had long swimming than control group, there is no significant difference in the glycogen contents of gastrocnemus muscle or liver between the control group and each treatment group. This demonstrated an improvement in endurance. These results suggest that reported herbal beverage is very effective to combat fatigue, improve endurance and increase overall physical activity.

PHYSICAL PROPERTIES AND SURFACE TOPOGRAPHY OF ORTHODONTIC STAINLESS STEEL WIRES : COMPARING A NEW KOREAN PRODUCT WITH OTHERS FROM FOREIGN COMPANIES (여러 스테인레스 스틸 호선의 물성 및 표면의 비교)

  • Lee, Sung-Ho;Kim, Tae-Woo;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.149-157
    • /
    • 2001
  • The purpose of this study was to investigate the property of a new Korean stainless steel wire(Jinsung Ind.) comparing with other foreign Products. Five types of stainless steel wires (Standard, Resilient, HI-T of Unitek, Stainless steel of Ormco and Jinsung Ind.) in 0.016x0.022 and 0.019x0.02 were tested to observe for Composition analysis, size difference, tensile properties, flexure bending property, tortion property, surface hardness and surface topography by means of SEM. The findings suggest that: 1. In maximum tensile strength of tensile properties, Unitek Hi-T showed the greatest value, followed by Unitek Resilient, Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Hi-T showed highest value, followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Resilient, Unitek Standard in 0.019x 0.025. 2. In elongation rate, Unitek Standard showed the greatest value, fellowed by Ormco Stainless Steel, Unitek Hi-T, Unitek Resilient, Jinsung Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the highest value, followed by Unitek Standard, Ormco Stainless Steel, Jinsung Stainless Steel, Unitek Resilient in 0.019x0.025. 3. In modulus of elasticity, Jinsung Stainless Steel showed the greatest value, followed by Unitek Hi-T, Unitek Resilient, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Unitek Resilient showed the highest value followed by Jinsung Stainless Steel, Ormco Stainless Steel, Unitek Hi-T, Unitek Standard in 0.019x0.025. 4. In bending fatigue test, Jinsung Stainless Steel showed the greatest fracture resistance, followed by Unitek Hi-T, Unitek Standard, Unitek Resilient, Ormco Stainless Steel in 0.016x0.022, and Unitek Hi-T showed the greatest fracture resistance followed by Jinsung Stainless Steel, Unitek Resilient, Unitek Standard, Ormco Stainless Steel in 0.019x0.025. 5. In twist test, Unitek Resilient showed the greatest fracture resistance, followed by Jinsung Stainless Steel, Unitek Hi-7, Ormco Stainless Steel, Unitek Standard in 0.016x0.022, and Jinsung showed the greatest fracture resistance, followed by Unitek Resilient, Unitek Standard, Ormco Stainless Steel, Unitek Hi-T. 6. In surface topography, every products showed indentation and pitting. Jinsung stainless steel wire showed long thin indentation and relatively smooth surface. Unitek wires showed indentation and pitting and Ormco wire showed a lot of irregular pittings.

  • PDF

Effect of Zr/Ti Concentration in the PLZT(10/y/z) Thin Films From the Aspect of NVFRAM Application (비휘발성 메모리소자로의 응용의 관점에서 PLZT(10/y/z) 박막에서의 Zr/Ti 농도변화 효과)

  • Kim, Seong-Jin;Gang, Seong-Jun;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.313-322
    • /
    • 2001
  • The effects of Zr/Ti concentration ratio in PLZT (10/y/z) thin films prepared by sol-gel method are investigated for the NVFRAM application. Rosette and pyrochlore phase are observed in PLZT (10/40/60) thin film and the (100) orientation, the grain size, and the surface roughness of PLZT thin films increase due to the increase of Ti amount in Zr/Ti concentration ratio. As Ti amount of Zr/Ti concentration ratio increases, the dielectric constants at 10KHz decrease from 600 to 400, while the loss tangents increase from 0.028 to 0.053 and the leakage current densities at 170 kY/cm decrease from 1.64$\times$10$^{-6}$ to 1.26$\times$10$^{-7}$ A/$\textrm{cm}^2$. In the results of hysteresis loops measured at $\pm$ 170 ㎸/cm, the remanent polarization and the coercive field increase from 6.62 to 12.86 $\mu$C/$\textrm{cm}^2$ and from 32.15 to 56.45 ㎸/cm, respectively, according to the change from 40/60 to 0/100 in Zr/Ti concentration ratio. Fatigue and retention properties also improve much as the Zr/Ti concentration ratio change from 40/60 to 0/100. After applying 10$^{9}$ square pulses with $\pm$5V, the remanent polarization of the PLZT (10/40/60) thin film decreases 50% from the initial state while that of the PLZT (10/0/100) thin film decreases 30%. In the results of retention measurements of 10$^{5}$ s, the remanent polarization of the PLZT (10/0/100) thin film decreases only 11% from the initial state, while that of the PLZT (10/40/60) thin film decreases 40%.

  • PDF

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF

A Study on the Characteristics of the Residual Stress Distribution of Steel Structural Members (용접(鎔接) 강구조(鋼構造) 부재(部材)의 잔류응력(殘留應力) 특성(特性)에 관한 연구(研究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.93-101
    • /
    • 1987
  • Residual stresses have remained around welding areas of a steel structure member after welding operation. The major causes to occur these residual stresses are the local heat due to a welding, the heat stresses due to a irregular and rapid cooling condition, the material and rigidity of a steel structure. Ultimatly, these residual stresses have been known to decrease a brittle fracture strength, a fatigue strength, a buckling strength, dynamic properties, and the corrosion resistance of the material. This paper deals with the residual stresses on a steel structure member through experimental studies. SWS 58 plates were welded by the method of X-groove type. These plates were layed on the heat treatment at four different temperatures; $350^{\circ}C$, $500^{\circ}C$, $650^{\circ}C$ and $800^{\circ}C$. The resulting residual Stresses were measured by hole drilling method, and the followings were obtained. The residual stresses on the vicinity of a welding point were relieved most effectively at the temperature of $650^{\circ}C$, and these stresses relieved completly when the ratio of a hole diamerter to a hole depth became unity. Hardness test shows that the higher value of hardness at the heat affected zone dropped to belower as the temperature went up from $350^{\circ}C$ to $800^{\circ}C$. The Welding input heats have not influenced the magnitude of residual stresses at the input heat range between above and below one forth than standard.

  • PDF

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

Evaluation of Mechanical Test Characteristics of Fillet Welding (필릿 용접의 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun;Rhim, Jong-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.535-541
    • /
    • 2020
  • FCAW is used mainly in the welding of carbon steel and alloy steel because it can be welded in all positions and can obtain excellent quality at sites with variable working conditions. Recently, many studies in Korea have estimated the fatigue strength, residual stress, and deformation, and to develop a fillet welding process. On the other hand, there have been few studies of the mechanical properties based on the strength, macro and magnetic particle test results for fillet welding. This study shows the following results through fillet welding, macro testing and strength testing using SM490A (solid-structure rolled steel) for thick plates using SS400 (rolled steel) for the upper plate and FCAW. The hardness test, macro test and magnetic particle test were then conducted. The hardness tests showed that all result values were smaller than the KS B 0893 standard values of 350Hv. The macro-test showed that each type of welded part was in a normal organic state and that there were no internal errors, bubbles, or impurities on the front of the welded part. Therefore, there were no concerns about lamination. The magnetic particle examination showed no problems.