• Title/Summary/Keyword: Fatigue and durability test

Search Result 207, Processing Time 0.024 seconds

Fatigue Characteristics of Bicycle Frames Depending on Types and Materials (자전거 프레임의 소재 및 종류에 따른 피로특성)

  • Kwon, Kyoung-Bae;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.8-12
    • /
    • 2017
  • Bicycles are very popular sporting goods in these days. Thus, the durability of bicycles is very important for the safety of bicyclists. It is well known that a bicycle frame is a major component which is essential to the safety and performance of a complete bicycle. In this study, the durability of bicycle frames were experimentally investigated under the fatigue load. Eighty bicycle frames with different types and materials were prepared and tested according to EN standards. Three kinds of fatigue loads, that is, pedalling, vertical and horizontal fatigue load, which occur constantly during riding a bicycle, were applied to the bicycle frames. The experimental results show that the horizontal fatigue load was the severest mode to pass EN standard. The pass ratio of horizontal fatigue load test was 45.2%, while the pass ratio of vertical fatigue load test was 100%. Most of cracks were found at the right side of bottom bracket shell and at the intersection area between head tube and down tube. It seems that the experimental results can be applied to improve the safety and performance of a bicycle frame.

Durability Evaluation of a Lightweight 40-feet Container Trailer (40피트 경량 컨테이너 트레일러의 내구성 평가)

  • Kim, J.G.;Kim, J.Y.;Yoon, H.J.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.31-36
    • /
    • 2011
  • The need for the lightweight of special vehicle trailer frame is substantially growing due to high gasoline prices and serious environmental issues. In this study, we develop a new lightweight sub-frame for large container trailers and evaluate its durability through a fatigue test. To this end, a reliable three-dimensional parametric finite element model of a sub-frame is constructed and then an optimized lightweight sub-frame is newly developed by using the Taguchi method. Next, we make a trial product of the optimized lightweight sub-frame and conduct a driving test to identify the driving load history at vulnerable areas. Finally, we evaluate the durability of the developed lightweight sub-frame through a fatigue test based on the load history.

Study of Vibration Fatigue Test for Urea Tank of Diesel Vehicle Considering Vibration Characteristics (디젤차량 요소수탱크의 진동 특성을 고려한 진동내구시험법 연구)

  • Yoon, Ji Soo
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • Purpose: Satisfying the environmental regulations, the automobile manufacturer should install urea tank, which is a key component of the urea system. However, due to the limitations of existing layouts, it may be mounted which is disadvantageous to vibration and shock resulting in durability robust. analyze the factors affecting the durability life of urea tank and the vibration characteristics through RLDA. In this study, clarify the limit of the current practice test method of urea tank and analyze the possibility of the new vibration test method in the system unit reflecting the characteristics of actual use condition. Methods: Analyzing the factors affecting the durability life of urea tank and the vibration characteristics through PSD & FDS of RLDA that actual vehicle driving data on durability test road. Results: The limit of the uniform width/single frequency test method of urea tank is clarifed and the positive prospects of the new test method are discovered. Conclusion: The vibration durability test with PSD method in system unit effectively reflects the magnitude and frequency characteristics of field vibration.

Fatigue Durability Analysis and Evaluation for Straighted Type Exhaust System of Automobile (자동차용 직선화 배기시스템의 피로내구 해석 및 평가)

  • Park Sejong;Suh Hocheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.147-152
    • /
    • 2005
  • The exhaust system of automobile is faced with random or spectrum types of fatigue loads during usage life and so needs to be closely estimated for quality and performance to have enough certainty on design endurance lift during preliminary design process. Structural operation conditions, operation load history, property of material and manufacturing process etc. should be considered by performing experiment approach. Using the software program for predicting fatigue life quickly and exactly in preliminary design stage saves plenty of time and cost generated by fatigue tests. In this paper, fatigue life prediction was performed on the basis of fatigue analysis using MSC/FATIGUE and load data from field test and the life of development items was estimated and compared through the results.

Durability Analysis of Automotive AHSS Component Considering GMAW Condition (GMAW 용접조건을 고려한 자동차 AHSS 샤시부품의 내구해석)

  • Kwon, Hyuk-Sun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.83-83
    • /
    • 2009
  • The automotive chassis components are structural assemblies that support the engine, suspension, and steering components of the vehicle. For the development of AHSS components, the durability analysis is important. In this paper, the low cycle fatigue property of AHSS was evaluated for the geometry complex and local plasticity in the base material. The GMAW optimization was implemented for the weld soundness using the moving least square method. And the weld S-N curves of AHSS were evaluated to access durability analysis for the weld region. For the verification, the durability analysis of the couple torsion beam axle (CTBA) was performed and compared to the rig test result. The durability analysis using the low cycle fatigue property and the evaluated weld S-N curve of AHSS met the good agreement with the test result.

  • PDF

Shape Optimization Considering Fatigue Life of Pulley in Power-Steering Pulley (파워스티어링 오일펌프용 풀리의 피로수명을 고려한 형상최적화)

  • Shim, Hee-Jin;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1041-1048
    • /
    • 2006
  • The pulley is one of core mechanical elements in the power steering system for vehicles. The pulley operates under both the compressive loading and the torque. Therefore, to assure the safety of the power steering system, it is very important to investigate the durability and the optimization of the pulley. In this study, the applied stress distribution of the pulley under high tension and torsion loads was obtained by using finite element analysis. Based on these results the fatigue life of the pulley with the variation of the fatigue strength was evaluated by a durability analysis simulator. The results at 50% and 1% for the failure probability were compared with respect to the fatigue life. In addition to the optimum design for the fatigue life is obtained by the response surface method. The response function utilizes the function of the life and weight factors. Within range for design life condition the minimization of the weight, one of the formulation, is obtained by the optimal design. Moreover the optimum design by considering its durability and validity is verified by the durability test.

Durability Analysis of a Large-sized Military Truck Using Virtual Test Lab (가상 시험 모델을 이용한 군용 대형트럭의 내구해석)

  • Suh, Kwon-Hee;Song, Bu-Geun;Lim, Hyeon-Vin;Chang, Hun-Sub;Oh, Cheol-Jo;Yoo, Woong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • In general, the durability performance of a large-sized military truck has been checked through a field durability test which required many man-hours and costs. To reduce these expenses, the durability analysis using a VTL(Virtual Test Lab) at an initial design stage was introduced recently. In this paper, the VTL with a multi-post testrig template for a large-sized truck was developed to compute the load histories transferred to cabin and chassis frame. The VTL consisted of trimmed FE models of cabin, chassis frame, and deck, dynamic models of front and rear suspensions, and a 8-post testrig template. The basic characteristics of the VTL were correlated with experimental results which had been extracted from actual driving test, modal test, and static weight test. The fatigue analysis using MSM(Modal Superposition Method) was applied to evaluate the durability performance of a large-sized military truck. From a series of analytic methods, it is shown that the fatigue analysis process using the VTL could be a useful tool to estimate the fatigue lives and weak areas of a large-sized military truck.

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-115
    • /
    • 2013
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine have been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine (액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.603-615
    • /
    • 2012
  • Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine has been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

  • PDF

Durability Assessment by Structural and Fatigue Analysis of Flow Control Valves (FCVs) for Hydrogen Refueling Stations (수소 충전소용 유량제어밸브(FCV)의 구조 및 피로해석을 통한 내구 성능 평가)

  • CHOI, INHO;HA, TAE IL;KIM, HAN SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.240-246
    • /
    • 2022
  • This study was conducted to develop a domestic product for a flow control valve for a hydrogen refueling station, and a domestic prototype was manufactured and the durability performance evaluation was conducted through comparison with an imported products. The stress generated by the internal pressure was checked and safety was confirmed using a commercial structural analysis program, ABAQUS, in accordance with the withstand pressure test standards. In addition, after identifying the weak areas the fatigue life was predicted through a commercial software, fe-safe. This fatigue analysis showed that the hydrogen gas repeated test criteria were satisfied.