DOI QR코드

DOI QR Code

Thermal Barrier Coating Durability Testing Trends for Thrust Chamber of Liquid-propellant Rocket Engine

액체로켓엔진 연소기 열차폐코팅 내구성 시험 기술동향

  • 이금오 (한국항공우주연구원 연소기팀) ;
  • 유철성 (한국항공우주연구원 연소기팀) ;
  • 임병직 (한국항공우주연구원 연소기팀) ;
  • 최환석 (한국항공우주연구원 연소기팀)
  • Received : 2012.05.24
  • Accepted : 2013.01.09
  • Published : 2013.02.01

Abstract

Durability testing method trends of the thermal barrier coating(TBC) for the combustion chamber of the liquid-propellant rocket engine have been investigated. Many types of the durability testing method such as the mechanical tests to measure surface cohesion force, the thermal fatigue tests with laser, furnace, burner or plasma, the small scale combustion tests using injectors, and the thermo-mechanical fatigue tests were observed. The TBC with sufficient durability can be selected for the use of combustion chamber through such specimen-level tests and the durability can be verified by the tests using the real scale combustion chambers.

액체로켓 연소기에 사용되는 열차폐코팅(TBC)의 내구성 시험 기술동향을 조사하였다. 표면 접합력 측정을 위한 기계적 시험, 레이저나 가열로, 버너나 플라즈마 등을 이용한 열피로 시험, 분사기를 이용한 소형 연소시험, 열적 기계적 피로시험 등의 많은 내구성 시험들이 있었다. 연소기에 사용하기 위해 이러한 시편 수준의 시험을 통해 내구성이 확보된 TBC를 결정할 수 있으며, 실제 연소시험을 통해 내구성을 검증할 수 있다.

Keywords

References

  1. Batakis, A. P. and Vogan, J. W., "Rocket Thrust Chamber Thermal Barrier Coatings," Final Report, NASA CR-175022, 1986
  2. Zhou, Y. C., Tonomori, T., Yoshida, A., Liu, L., Bignall, G. and Hashida T., "Fracture Characteristics of Thermal Barrier Coatings after Tensile and Bending Tests," Surface and Coatings Technology, Vol. 157, Issues 2-3, 2002, pp.118-127 https://doi.org/10.1016/S0257-8972(02)00154-8
  3. Yamazaki, Y., Schmidt, A. and Scholz, A., "The Determination of the Delamination Resistance in Thermal Barrier Coating System by Four-point Bending Tests," Surface & Coatings Technology, Vol. 201, Issues 3-4, 2006, pp.744-754 https://doi.org/10.1016/j.surfcoat.2005.12.023
  4. Ma, X.Q., Cho, S. and Takemoto, M., "Acoustic Emission Source Analysis of Plasma Sprayed Thermal Barrier Coatings during Four-point Bend Tests," Surface & Coatings Technology, Vol. 139, Issue 1, 2001, pp.55-62 https://doi.org/10.1016/S0257-8972(01)00995-1
  5. Guo, S. Q., Mumm, D. R., Karlsson, A. M. and Kagawa, Y., "Measurement of Interfacial Shear Mechanical Properties in Thermal Barrier Coating Systems by a Barb Pullout Method," Scripta Materialia, Vol. 53, No. 9, 2005, pp.1043-1048 https://doi.org/10.1016/j.scriptamat.2005.07.012
  6. Thurn, G., Schneider, G. A., Bahr, H. A. and Aldinger, F., "Toughenss Anisotropy and Damage Behavior of Plasma Sprayed ZrO2 Thermal Barrier Coatings," Surface & Coatings Tech., Vol. 123, Issues 2-3, 2000, pp.147-158 https://doi.org/10.1016/S0257-8972(99)00528-9
  7. Jian, C. Y., Hashida, T., Tahakashi, H. and Saito, M., "Thermal Shock and Fatigue Resistance Evaluation of Functionally Graded Coating for Gas Turbine Blades by Laser Heating Method," Composition Engineering, Vol. 5, No. 7, 1995, pp.879-889 https://doi.org/10.1016/0961-9526(95)00041-K
  8. Zhou, Y. C. and Hashida, T., "Thermal Fatigue Failure Induced by Delamination in Thermal Barrier Coating," International Journal of Fatigue, Vol. 24, Issues 2-4, 2002, pp.407-417 https://doi.org/10.1016/S0142-1123(01)00096-2
  9. Zhu, D. and Miller, R. A., "Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings," NASA Technical Paper 3676, 1997
  10. Zhu, D. and Miller, R. A., "Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems," NASA TM-2000-210237, 2000
  11. Zhu, D., Choi, S. R. and Miller, R. A., "Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings," NASA TM-2001-210816, 2001
  12. Zhu, D., Choi, S. R., and Miller, R. A., "Development and Thermal Fatigue Testing of Ceramic Thermal Barrier Coatings," Surface & Coatings Tech., 2004, pp.146-152
  13. Zhu, D. and Miller, R. A., "The Development of Erosion and Impact Resistance Turbine Airfoil Thermal Barrier Coatings," ECI-Thermal and Environmental Barrier Coatings, Irsee, Germany, 2007
  14. Zhu, D. and Miller, R. A., "Advanced Low Conductivity Thermal Barrier Coatings: Performance and Future Directions," 35th International Conf. on Metallurgical Coatings and Thin Films, San Diego, California, 2008
  15. Curren, A. N. and Love, W. K., "Plasma Tests of Sprayed Coatings for Rocket Thrust Chamber," NASA TM X-3072, 1974
  16. Kuczmarski, M. A., Miller, R. A. and Zhu, D., "CFD-guided Development of Test Rigs for Studying Erosion and Large-particle Damage of Thermal Barrier Coatings," Modeling and Simulation in Engg., Hindawi Publishing Corp., ID 837921, 2011
  17. Stepka, F. S., "NASA Thermal Barrier Coatings - Summary and Update," NASA TM 79053, 1978
  18. Hejwowski, T., "Comparative Study of Thermal Barrier Coatings for Internal Combustion Engine," Vacuum, Vol. 85, Issue 5, 2010, pp.610-618 https://doi.org/10.1016/j.vacuum.2010.08.020
  19. Nguyen, P., "Slurry Sprayed Thermal Barrier Coatings for Aerospace Application," Doctoral Theses, U. of Adelaide, 2010
  20. Quentmeyer, R. J., Kasper, H. J. and Kazaroff, J. M., "Investigation of the Effect of Ceramic Coatings on Rocket Thrust Chamber Life," NASA TM-78892, 1978
  21. Schulz, U., Fritscher, K., Peters, M., Greuel, D. and Haidn, O., "Fabrication of TBC-armored Rocket Combustion Chambers by EB-PVD Methods and TLP Assembling," Science and Technology of Advanced Materials, Vol. 6, No. 2, 2005, pp.103-110 https://doi.org/10.1016/j.stam.2004.10.001
  22. Sung, I. K. and Anderson, W., "Test and Evaluation of Rocket Combustor Life Prediction Methodologies," European Conference for Aerospace Sciences (EUCASS), July 4-7, 2005, Moscow, RUSSIA.
  23. Liu, C., Zhang, Z., Jiang, X., Liu, M. and Zhu, Z., "Comparison of thermal shock behaviors between plasma-sprayed nanostructured and conventional zirconia thermal barrier coatings," Trans. Nonferrous Met. Soc. China, Vol. 19, Issue 1, 2009, pp.99-107 https://doi.org/10.1016/S1003-6326(08)60235-6
  24. Wright, P. K., "Influence of cyclic strain on life of a PVD TBC," Mat. Sci. and Engg., A245, Vol. 245, No. 2, 1998, pp.191-200 https://doi.org/10.1016/S0921-5093(97)00850-2
  25. Baufeld, B., Tziman, E., Mullejans, H., Peteves, S., Bressers, J. and Stamm, W., "Thermal-mechanical fatigue of MAR-M 509 with a thermal barrier coating," Mat. Sci. and Engg. A315, Vol. 315, No. 1-2, 2001, pp.231-239 https://doi.org/10.1016/S0921-5093(01)01208-4
  26. 이광진, 임병직, 김종규, 한영민, 최환석, "액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성," 항공우주기술, 제8권, 제1호, 2010, pp.138-143
  27. 강명수, 김준성, "내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동," 한국정밀공학회지, 제27권, 12호, 2010, pp.99-106
  28. 김대진, 이동훈, 구재민, 송성진, 석창성, 김문영, "플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가," 대한기계학회논문집 A권, 제32권, 제7호, 2008, pp.569-575 https://doi.org/10.3795/KSME-A.2008.32.7.569
  29. 김대진, 신인환, 구재민, 석창성, 김문영, "플라즈마 용사 열차폐 코팅의 박리수명 평가에 관한 연구," 대한기계학회논문집 A권, 제33 권, 제2호, 2009, pp.162-168 https://doi.org/10.3795/KSME-A.2009.33.2.162

Cited by

  1. Effects of injector recess on heat flux in a combustion chamber with cooling channels vol.37, 2014, https://doi.org/10.1016/j.ast.2014.05.012