• Title/Summary/Keyword: Fat quantification

Search Result 39, Processing Time 0.026 seconds

Effect of Gd-EOB-DTPA on Hepatic Fat Quantification using Two-point Dixon Technique (Two-point Dixon기법을 이용한 간의 지방정량화에 Gd-EOB-DTPA가 미치는 영향)

  • Koo, No-Hyun;Choi, Kwan-Woo;Yoo, Beong-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.215-221
    • /
    • 2017
  • The purpose of present study was to assess whether Gd-EOB-DTPA with gadolinium-based contrast agent administration affects fat quantification using the two-point Dixon technique. Between April 2016 and September, 60 patients who underwent hepatic fat quantification using the two-point Dixon technique were divided into two group (normal liver donors=30, abnormal hepatic steatosis=30) and we compared the variability of mean fat fraction before and after administration Gd-EOB-DTPA. As a results, in both group, fat fraction after injection Gd-EOB-DTPA was significantly decreased (normal liver donors -33.8%, hepatic steatosis -47.2%) compared to before injection Gd-EOB-DTPA, suggesting that Gd-EOB-DTPA affects fat quatification using two-point Dixon technique. In conclusion, hepatic fat quantification using the two-point Dixon technique could maintain diagnostic value by acquiring images before administration Gd-EOB-DTPA.

Measurement and Compensation of Respiration-Induced B0 Variations in Lumbar Spine Bone Marrow Fat Quantification

  • Nam, Yoonho;Hwang, Eojin;Jung, Joon-Yong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • Purpose: To investigate and compensate the effects of respiration-induced B0 variations on fat quantification of the bone marrow in the lumbar spine. Materials and Methods: Multi-echo gradient echo images with navigator echoes were obtained from eight healthy volunteers at 3T clinical scanner. Using navigator echo data, respiration-induced B0 variations were measured and compensated. Fat fraction maps were estimated using $T2^*$-IDEAL algorithm from the uncompensated and compensated images. For manually drawn bone marrow regions, the estimated B0 variations and the calculated fat fractions (before and after compensations) were analyzed. Results: An increase of temporal B0 variations from inferior level to superior levels was observed for all subjects. After compensation using navigator echo data, the effects of the B0 variations were reduced in gradient echo images. The calculated fat fractions show significant differences (P < 0.05) in L1 and L3 between the uncompensated and the compensated. Conclusion: The results of this study raise the need for considering respiration-induced B0 variations for accurate fat quantification using gradient echo images in the lumbar spine. The use of navigator echo data can be an effective way for the reduction of the effects of respiratory motion on the quantification.

Background Gradient Correction using Excitation Pulse Profile for Fat and $T_2{^*}$ Quantification in 2D Multi-Slice Liver Imaging (불균일 자장 보정 후처리 기법을 이용한 간 영상에서의 지방 및 $T_2{^*}$ 측정)

  • Nam, Yoon-Ho;Kim, Hahn-Sung;Zho, Sang-Young;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.6-15
    • /
    • 2012
  • Purpose : The objective of this study was to develop background gradient correction method using excitation pulse profile compensation for accurate fat and $T_2{^*}$ quantification in the liver. Materials and Methods: In liver imaging using gradient echo, signal decay induced by linear background gradient is weighted by an excitation pulse profile and therefore hinders accurate quantification of $T_2{^*}$and fat. To correct this, a linear background gradient in the slice-selection direction was estimated from a $B_0$ field map and signal decays were corrected using the excitation pulse profile. Improved estimation of fat fraction and $T_2{^*}$ from the corrected data were demonstrated by phantom and in vivo experiments at 3 Tesla magnetic field. Results: After correction, in the phantom experiments, the estimated $T_2{^*}$ and fat fractions were changed close to that of a well-shimmed condition while, for in vivo experiments, the background gradients were estimated to be up to approximately 120 ${\mu}T/m$ with increased homogeneity in $T_2{^*}$ and fat fractions obtained. Conclusion: The background gradient correction method using excitation pulse profile can reduce the effect of macroscopic field inhomogeneity in signal decay and can be applied for simultaneous fat and iron quantification in 2D gradient echo liver imaging.

Fat Quantification in the Vertebral Body: Comparison of Modified Dixon Technique with Single-Voxel Magnetic Resonance Spectroscopy

  • Sang Hyup Lee;Hye Jin Yoo;Seung-Man Yu;Sung Hwan Hong;Ja-Young Choi;Hee Dong Chae
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.126-133
    • /
    • 2019
  • Objective: To compare the lumbar vertebral bone marrow fat-signal fractions obtained from six-echo modified Dixon sequence (6-echo m-Dixon) with those from single-voxel magnetic resonance spectroscopy (MRS) in patients with low back pain. Materials and Methods: Vertebral bone marrow fat-signal fractions were quantified by 6-echo m-Dixon (repetition time [TR] = 7.2 ms, echo time (TE) = 1.21 ms, echo spacing = 1.1 ms, total imaging time = 50 seconds) and single-voxel MRS measurements in 25 targets (23 normal bone marrows, two focal lesions) from 24 patients. The point-resolved spectroscopy sequence was used for localized single-voxel MRS (TR = 3000 ms, TE = 35 ms, total scan time = 1 minute 42 seconds). A 2 × 2 × 1.5 cm3 voxel was placed within the normal L2 or L3 vertebral body, or other lesions including a compression fracture or metastasis. The bone marrow fat spectrum was characterized on the basis of the magnitude of measurable fat peaks and a priori knowledge of the chemical structure of triglycerides. The imaging-based fat-signal fraction results were then compared to the MRS-based results. Results: There was a strong correlation between m-Dixon and MRS-based fat-signal fractions (slope = 0.86, R2 = 0.88, p < 0.001). In Bland-Altman analysis, 92.0% (23/25) of the data points were within the limits of agreement. Bland-Altman plots revealed a slight but systematic error in the m-Dixon based fat-signal fraction, which showed a prevailing overestimation of small fat-signal fractions (< 20%) and underestimation of high fat-signal fractions (> 20%). Conclusion: Given its excellent agreement with single-voxel-MRS, 6-echo m-Dixon can be used for visual and quantitative evaluation of vertebral bone marrow fat in daily practice.

A Study of the Development for Fatty Liver Quantification Diagnostic Technology from Ultrasound Images using a Simulated Fatty Liver Phantom (모사 지방간 팬텀을 활용한 초음파영상에서 지방간 정량화 진단 기술 개발을 위한 연구)

  • Yei-Ji Lim;Seung-Man Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.135-144
    • /
    • 2024
  • Ultrasonography examination has limitations in quantifying hepatic fat quantification. Therefore, this study aimed to experimentally demonstrate whether changes in signal attenuation during ultrasound imaging can be quantified using simulated hepatic phantoms to assess hepatic fat content. Additionally, we aimed to evaluate the potential of ultrasound imaging for diagnosing hepatic fatty liver by analyzing the relationship between hepatic fat content and signal intensity in ultrasound images. In this study, we developed a total of five stimulated hepatic phantoms by homogeneously mixing water and oil. We confirmed the fat content of the phantoms using magnetic resonance imaging (MRI) and ultrasound imaging, and measured signal intensity according to distance in ultrasound images to analyze the correlation and mean comparison between fat content and signal intensity. We observed that as the fat content increased, the ultrasound penetration intensity decreased, confirming the potential for quantifying hepatic fat content using ultrasound. Additionally, the analysis of the correlation between the measured fat content using MRI and the signal intensity measured in ultrasound images showed a high correlation. Statistical analysis in our study confirmed that as the fat content increased, the slope representing signal during ultrasound imaging (US-GRE) decreased. In this study, it was statistically confirmed that the US-GRE value of ultrasound images gradually decreases as the fat content increases, and it is believed that US-GRE can serve as a biomarker expressing fatty liver content.

Field Map Estimation for Effective Fat Quantification at High Field MRI (고자장 자기공명영상에서 효율적인 지방 정량화를 위한 필드 맵 측정 기술)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.558-574
    • /
    • 2014
  • The number of fatty liver patients is sharply growing due to the rapid increase in the incidence of metabolic syndrome, which can lead to diseases such as abdominal obesity, hypertension, diabetes, and hyperlipidemia. Early diagnosis requires examinations using magnetic resonance imaging (MRI), wherein quantitative analyses are implemented through a professional water-fat separation method in many cases, as the intensity values of the areas of interest and non-interest are considerably similar or the same. However, such separation method generates inaccurate results in high magnetic fields, where the inhomogeneity of the fields increases. To overcome the limits of such conventional fat quantification methods, this paper proposes a field map estimation method that is effective in high magnetic fields. This method generates field maps through echo images that are obtained using the existing IDEAL sequences, and considers the wrapping degree of the field maps. Then clustering is performed to separate calibration areas, the least square fits based on the region growing method schema of the separated calibration areas, and the histograms are adjusted to separate the water from the fats. In experiment results, our proposed method had a superior fat detection rate of an average of 86.4%, compared to the ideal method with an average of 61.5% and Yu's method with an average of 62.6%. In addition, it was confirmed that the proposed method had a more accurate water detection rate of 98.4% on the average than the 88.6% average of the fat saturation method.

Experimental In-Vivo Models Used in Fat Grafting Research for Volume Augmentation in Soft Tissue Reconstruction

  • Lujan-Hernandez, Jorge;Appasani, Raghu;Sullivan, Kylee;Siegel-Reamer, Leah;Lalikos, Janice F.
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • As the popularity of fat grafting research increases, animal models are being used as the source of pre-clinical experimental information for discovery and to enhance techniques. To date, animal models used in this research have not been compared to provide a standardized model. We analyzed publications from 1968-2015 to compare published accounts of animal models in fat grafting research. Data collected included: species used, graft characteristics (donor tissue, recipient area, amount injected, injection technique), time of sacrifice and quantification methods. Mice were most commonly used (56% of studies), with the "athymic nude" strain utilized most frequently (44%). Autologous fat was the most common source of grafted tissue (52%). Subcutaneous dorsum was the most common recipient site (51%). On average, $0.80{\pm}0.60mL$ of fat was grafted. A single bolus technique was used in 57% of studies. Fat volume assessment was typically completed at the end of the study, occurring at less than 1 week to one year. Graft volume was quantified by weight (63%), usually in conjunction with another analysis. The results demonstrate the current heterogeneity of animal models in this research. We propose that the research community reach a consensus to allow better comparison of techniques and results. One example is the model used in our laboratory and others; this model is described in detail. Eventually, larger animal models may better translate to the human condition but, given increased financial costs and animal facility capability, should be explored when data obtained from small animal studies is exhausted or inconclusive.

Quantitative Evaluation of Hepatic Steatosis Using Advanced Imaging Techniques: Focusing on New Quantitative Ultrasound Techniques

  • Junghoan Park;Jeong Min Lee;Gunwoo Lee;Sun Kyung Jeon;Ijin Joo
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.13-29
    • /
    • 2022
  • Nonalcoholic fatty liver disease, characterized by excessive accumulation of fat in the liver, is the most common chronic liver disease worldwide. The current standard for the detection of hepatic steatosis is liver biopsy; however, it is limited by invasiveness and sampling errors. Accordingly, MR spectroscopy and proton density fat fraction obtained with MRI have been accepted as non-invasive modalities for quantifying hepatic steatosis. Recently, various quantitative ultrasonography techniques have been developed and validated for the quantification of hepatic steatosis. These techniques measure various acoustic parameters, including attenuation coefficient, backscatter coefficient and speckle statistics, speed of sound, and shear wave elastography metrics. In this article, we introduce several representative quantitative ultrasonography techniques and their diagnostic value for the detection of hepatic steatosis.

Effect of Particle Size of Forage in the Dairy Ration on Feed Intake, Production Parameters and Quantification of Manure Index

  • Moharrery, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.483-490
    • /
    • 2010
  • The objectives of this study were to measure particle size and evaluate the effect of increasing alfalfa hay particle size on production characteristics in lactating Holstein dairy cows. Ninety multiparous Holstein cows in early to mid-lactation were randomly assigned in a complete randomized design for a 30-day period. Animals were offered one of the three diets, which were identical in energy, protein, and chemical composition, but differed only in particle size of alfalfa hay. The treatments were A) total mixed ration (TMR) in which only fine chopped alfalfa hay was incorporated in the ration, B) the same diet in which half of the alfalfa hay was fine chopped and incorporated in the mixed ration and half was long hay and offered as a top dressing, and C) the same diet with long hay alfalfa offered as a top dressing. Distribution of particle size of rations was determined through 20,000, 8,000 and 1,000 ${\mu}m$ sieves. The new method of quantitative determination of manure index was examined for each cow on different treatments. The geometric mean length of particle size in the rations was 5,666, 9,900 and 11,549 ${\mu}m$ for treatments A, B and C, respectively. Fat corrected milk (4%), milk fat percentage and production were significantly different (p<0.05) in treatment A versus B and C (fat corrected milk (FCM, 4%)) 28.3 vs. 35.2 and 32.3 kg/d, fat percentage 2.89, 4.04 and 3.62; but the change of ration particle size had no significant effect on milk production (p>0.05). Blood concentration of cholesterol in treatment A was significantly higher (p<0.05) than treatment B and C (181.0 vs. 150.0 and 155.2 mg/dl). Manure index in treatment C was significantly different (p<0.05) from treatment B (15.86 vs. 17.67). Based on these experimental findings, it is concluded that an increase in the ration particle size can increase milk fat percentage due to providing more physically effective fiber, which in turn could effect changes in manure consistency.

Simultaneous Quantification of Oleins (triolein, diolein and monoolein) in Mouse Feces using Liquid Chromatography-Electrospray Ionization/Mass Spectrometry

  • Lim, Jong-Hyun;Lee, Jeong-Ae;Jang, Yu-Ra;Chung, He-Sson;Lee, Won-Yong;Chung, Bong-Chul
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.68-73
    • /
    • 2012
  • Fat malabsorption is an important cause of poor growth in infancy and childhood. Steatorrhea tests have been developed using various methods. Traditional measurements of stool fat, however, require large samples and it often takes as a week to complete the analysis. In this paper, a liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS) method was developed for simultaneous quantitative analysis of triacylglycerols, triolein, diolein and monoolein, in mouse feces. Moreover, the procedure was rapid, simple as well as compatible with LC-ESI/MS. Chloroform-isopropyl alcohol solution was used for fat-soluble sample extraction. After centrifugation and filtration, an analytical solution was prepared. Triolein, diolein and monoolein were separated using non-aqueous reversed-phase column with the mobile phase consisting of A (methanol) and B (acetone-isopropyl alcohol). The precision (% CV) and accuracy (% bias) of the assay were 3.8-14.7% and 85.2-114.9%, respectively. This method has been successfully applied to simultaneous determination of triolein, diolein and monoolein in feces from 30 mice. This method can therefore be applied to measure triacylglycerols in mouse feces accurately and precisely by LC-ESI/MS, thereby helping to predictive biomarker in fat malabsorption and diagnostic research.