• Title/Summary/Keyword: Fat cells

Search Result 667, Processing Time 0.028 seconds

Phosphorylation of tyrosine-14 on Caveolin-1 enhances lipopolysaccharide-induced inflammation in human intestinal Caco-2 cells

  • Gong Deuk Bae;Kyong Kim;Se-Eun Jang;Dong-Jae Baek;Eun-Young Park;Yoon Sin Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.311-319
    • /
    • 2023
  • Caveolin-1 (Cav-1) is the main structural component of the caveolae on the plasma membrane, which regulates various cellular processes, including cell growth, differentiation, and endocytosis. Although a recent study demonstrated that Cav-1 might be involved in diabetes-associated inflammation, its exact role in the intestine was unclear. In this study, we examined the intestinal expression of Cav-1 in diabetic conditions. We also investigated its effect on lipopolysaccharide (LPS)-induced inflammation by expressing this protein in human intestinal Caco-2 cells lacking Cav-1. We observed that increased Cav-1 levels and decreased expression of tight junction proteins affected intestinal permeability in high-fat diet-induced diabetic mice. When Caco-2 cells were treated with LPS, Cav-1 enhanced the NF-κB signaling. Moreover, LPS reduced the expression of tight junction proteins while it increased cell-cell permeability and reactive oxygen species generation in Caco-2 cells and this effect was amplified by cav-1 overexpression. LPS treatment promoted phosphorylation of tyrosine-14 (Y14) on Cav-1, and the LPS-induced NF-κB signaling was suppressed in cells expressing non-phosphorylatable Cav-1 (tyrosine-14 to phenylalanine mutant), which reduced intestinal barrier permeability. These results suggest that Cav-1 expression promotes LPS-induced inflammation in Caco-2 cells, and phosphorylation of Y14 on Cav-1 might contribute to the anti-inflammatory response in LPS-induced NF-κB signaling and cell permeability.

Effect of the Streptozotocin Induced Diabetes in the Rat Submandibular Glands (Streptozotocin유도 당뇨병이 백서 악하선에 미치는 영향에 관한 병리조직학적 연구)

  • Hung-Mo Kim;Jung-Pyo Hong
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.1
    • /
    • pp.45-55
    • /
    • 1994
  • The purpose of this study was to observe the microscopic change of salivary gland tissues, which is the cause of xerostomia in diabetic condition: for this target the author injected STZ 0.1ml/100gm b.w. on rat to produce diabetes, and than observed microscopic change in submandibular gland through the histopathologic method, obtaining as follows : 1. All of the experimental specimens suffered diabetes after injection of STZ, but the blood glucose level was irregular. 2. There were not interrelationship between the blood glucose level and microscopic change on salivary gland tissues. 3. The salivary gland changed after diabetes initiation in lapse of times; after 14 days,suffered severe destruction, however after 17 days, it was regenerated. 4. Salivary glands showed congested, destructive acini cells, and hyperplastic ductal cells as well as salivary gland duct-like structures. 5. Then were accumulation of fat granules within the cytoplasm of the acini cells on mucous gland in diabetic condition. 6. According to insulin injection, there were no more changes on salivary gland tissues, even in the accumulation of fat granules. 7. Histological changes of the serous gland were obvious more than the mucous gland in this experimental condition.

  • PDF

Effects of Gyeongshingangjeehwan 18 on Pancreatic Fibroinflammation in High-Fat Diet-Fed Obese C57BL/6J Mice

  • Jang, Joonseong;Park, Younghyun;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.24 no.4
    • /
    • pp.341-348
    • /
    • 2018
  • The polyherbal drug Gyeongshingangjeehwan 18 (GGEx18) from Rheum palmatum L. (Polygonaceae), Laminaria japonica Aresch (Laminariaceae), and Ephedra sinica Stapf (Ephedraceae) has traditionally been used as an antiobesity drug in Korean local clinics. This study investigates the effects of GGEx18 on pancreatic fibroinflammation in high-fat diet (HFD)-fed obese C57BL/6J mice and the molecular mechanism involved in this process. After HFD-fed obese C57BL/6J mice were treated with GGEx18 (125, 250, and 500 mg/kg) for 12 weeks, variables and determinants of obesity, pancreatic inflammation, and fibrosis were measured using histology, immunohistochemistry, and real-time polymerase chain reaction. Administration of GGEx18 at 500 mg/kg/day to obese mice decreased body weight gain, mesenteric adipose tissue mass, and adipocyte size. GGEx18 treatment not only reduced mast cells and CD68-immunoreactive cells, but also decreased collagen levels and ${\alpha}$-smooth muscle actin-positive cells in the pancreas of HFD-fed mice. Concomitantly, GGEx18 decreased the expression of genes for inflammation (i.e., CD68 and tumor necrosis factor ${\alpha}$) and fibrosis (i.e., collagen ${\alpha}1$ and transforming growth factor ${\beta}$) in the pancreas of obese mice. These results suggest that GGEx18 may inhibit visceral obesity and related pancreatic fibroinflammation in HFD-fed obese mice.

Effects of Dyglomera® on leptin expression, pro-inflammatory cytokines, and adipocyte browning in 3T3-L1 cells

  • Da-Eun Min;Sung-Kwon Lee;Hae Jin Lee;Bong-Keun Choi;Dong-Ryung Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.186-196
    • /
    • 2023
  • Dyglomera® is an aqueous ethanol extract derived from the fruit and pods of Dichrostachys glomerata. A previous study has revealed that Dyglomera regulates adipogenesis and lipolysis by modulating AMP-activated protein kinase (AMPK) phosphorylation and increased expression levels of lipolysis-related proteins in white adipose tissue of high fat diet-induced mice and 3T3-L1 adipocyte cells. To further investigate mechanisms of Dyglomera, additional studies were performed using 3T3-L1 cells. Results revealed that Dyglomera downregulated adipogenesis by inhibiting the protein kinase B/mammalian target of rapamycin signaling pathway and reconfirmed that it downregulated gene expression levels of proliferator-activated receptor (PPAR)-γ, CCAAT enhancer binding protein α, sterol-regulation element-binding protein-1c. Dyglomera also reduced adipokines such as tumor necrosis factor alpha, interleukin-1β, and interleukin 6 by regulating leptin expression. Moreover, Dyglomera promoted beige-and-brown adipocyte-related phenotypes and regulated metabolism by increasing mitochondrial number and expression levels of genes such as T-box protein 1, transmembrane protein 26, PR domain 16, and cluster of differentiation 40 as well as thermogenic factors such as uncoupling protein 1, proliferator-activated receptor-gamma co-activator-1α, Sirtuin 1, and PPARα through AMPK activation. Thus, Dyglomera not only can inhibit adipogenesis, but also can promote lipolysis and thermogenesis and regulate metabolism by affecting adipokine secretion from 3T3-L1 adipocytes.

The Effect of Dietary Nuddle with Glucomannan on the Weight Loss in High Fat Diet-Induced Obese Rats (글루코만난을 첨가하여 제조한 국수가 고지방식이를 급여하여 유도된 비만흰쥐의 체중 감소에 미치는 영향)

  • 박수진;강명화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.893-898
    • /
    • 2003
  • This study was carried out to investigate the effect of body weight reduction of noddle contained glucomannan in high fat diets-induced obese rats. Male Spraque-Dawley rats were randomly assigned to control and high fat diets groups for 4 weeks. Four weeks later, the control and high fat diet grpups were rearranged into 4 groups by different levels of nuddle containing glucomannan. After 5 weeks of feeding, serum and whole blood was analyzed. Obesity index was significantly lower in the group fed nuddle contained glucomannan than that of high fat diet groups. The status of white blood cells in hematological examination was significantly higher in rats fed high fat diet and was not significantly different by fed nuddle. Serum albumin levels were not significantly different although glucose levels in serum was significantly different among groups. Serum triglyceride and Total cholesterol levels were the highest levels in rats fed high fat diets and showed the lowest levels in rats fed nuddle.

Testicular fat deposition attenuates reproductive performance via decreased follicle-stimulating hormone level and sperm meiosis and testosterone synthesis in mouse

  • Miao Du;Shikun Chen;Yang Chen;Xinxu Yuan;Huansheng Dong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.50-60
    • /
    • 2024
  • Objective: Testicular fat deposition has been reported to affect animal reproduction. However, the underlying mechanism remains poorly understood. The present study explored whether sperm meiosis and testosterone synthesis contribute to mouse testicular fat deposition-induced reproductive performance. Methods: High fat diet (HFD)-induced obesity CD1 mice (DIO) were used as a testicular fat deposition model. The serum hormone test was performed by agent kit. The quality of sperm was assessed using a Sperm Class Analyzer. Testicular tissue morphology was analyzed by histochemical methods. The expression of spermatocyte marker molecules was monitored by an immuno-fluorescence microscope during meiosis. Analysis of the synthesis of testosterone was performed by real-time polymerase chain reaction and reagent kit. Results: It was found that there was a significant increase in body weight among DIO mice, however, the food intake showed no difference compared to control mice fed a normal diet (CTR). The number of offspring in DIO mice decreased, but there was no significant difference from the CTR group. The levels of follicle-stimulating hormone were lower in DIO mice and their luteinizing hormone levels were similar. The results showed a remarkable decrease in sperm density and motility among DIO mice. We also found that fat accumulation affected the meiosis process, mainly reflected in the cross-exchange of homologous chromosomes. In addition, overweight increased fat deposition in the testis and reduced the expression of testosterone synthesis-related enzymes, thereby affecting the synthesis and secretion of testosterone by testicular Leydig cells. Conclusion: Fat accumulation in the testes causes testicular cell dysfunction, which affects testosterone hormone synthesis and ultimately affects sperm formation.

The Anti-obesity Effect of Seungyangjeseup-tang for High Fat Diet Induced Obese Mice (고지방식이 유도 비만 생쥐에 대한 승양제습탕의 항비만 효과)

  • Kim, Jung-Min;Choi, Soo-Min;Woo, Chang-Hoon;Ahn, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Objectives This study was designed to evaluate the efficacy of Seungyangjeseup-tang on obesity by using 3T3-L1 cells and high fat diet mice. Methods In vitro, Seungyangjeseup-tang extract (SYJST) (10, 50, 100, 200, 400, $800{\mu}g/mL$) ware added in 3T3-L1 cells. SYJST cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assasy. Adipocyte differentiation was measured by Oil Red-O staining. In vivo, the experimental animals were divided into five groups: normal diet-fed normal group (N), high-fat diet (HFD)-fed control group (Con), HFD+SYJST 100 mg/kg group (SY100), HFD+SYJST 200 mg/kg group (SY200), and HFD+olistat 60 mg/kg as a positive drug control group (Orli). Markers of obesity, such as body weight, liver weight, food intake, serum total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), liver tissue TC, TG and fecal TC, TG were measured. Results In vitro, cytotoxicity was not significant compared with the control group. 3T3-L1 cell's differentiation was significantly decreased in Oil Red-O staining. In vivo, compared with controls, mice treated with SYJST demonstrate lower body and liver weight, and reduced food intake. In addition, SYJST increased TC, TG in the serum but not significance. And SYJST showed decreasing tendency TC, TG in the liver tissue. Furthermore, SYJST increased TC, TG in the facal but not significance. Conclusions Based on the results above, Seungyangjeseup-tang may reduce adipocyte differentiation, body fat, food intake, liver weight in obesity. This suggests that Seungyangjeseup-tang may be clinically useful in obesity treatment.

Physiological Characteristics and Anti-obesity Effect of Lactobacillus plantarum K10

  • Kim, Seulki;Huang, Eunchong;Park, Soyoung;Holzapfel, Wilhelm;Lim, Sang-Dong
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.554-569
    • /
    • 2018
  • This study aimed to investigate the physiological characteristics and anti-obesity effects of Lactobacillus plantarum K10. The ${\alpha}-amylase$ inhibitory activity, ${\alpha}-glucosidase$ inhibitory activity, and lipase inhibitory activity of L. plantarum K10 was $94.66{\pm}4.34%$, $99.78{\pm}0.12%$, and $87.40{\pm}1.41%$, respectively. Moreover, the strain inhibited the adipocyte differentiation of 3T3-L1 cells ($32.61{\pm}8.32%$) at a concentration of $100{\mu}g/mL$. In order to determine its potential for use as a probiotic, we investigated the physiological characteristics of L. plantarum K10. L. plantarum K10 was resistant to gentamycin, kanamycin, streptomycin, ampicillin, ciprofloxacin, tetracycline, vancomycin, and chloramphenicol. It also showed higher Leucine arylamidase, Valine arylamidase, and ${\beta}-galactosidase$ activities. Moreover, it was comparatively tolerant to bile juice and acid, exhibiting resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus with rates of 90.71%, 11.86%, 14.19%, and 23.08%, respectively. The strain did not produce biogenic amines and showed higher adhesion to HT-29 cells compared to L. rhamnosus GG. As a result of the animal study, L. plantarum K10 showed significantly lower body weight compared to the high-fat diet group. The administration of L. plantarum K10 resulted in a reduction of subcutaneous fat mass and mesenteric fat mass compared to the high-fat diet (HFD) group. L. plantarum K10 also showed improvement in gut permeability compared to the HFD positive control group. These results demonstrate that L. plantarum K10 has potential as a probiotic with anti-obesity effects.

Effect of ACADL on the differentiation of goat subcutaneous adipocyte

  • A Li;YY Li;QB Wuqie;X Li;H Zhang;Y Wang;YL Wang;JJ Zhu;YQ Lin
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.829-839
    • /
    • 2023
  • Objective: The aim of this study was to clone the mRNA sequence of the Acyl-CoA dehydrogenase long chain (ACADL) gene of goats and explore the effect of ACADL on the differentiation of subcutaneous fat cells on this basis. Methods: We obtained the ACADL gene of goats by cloning and used quantitative real-time polymerase chain reaction (qPCR) to detect the ACADL expression patterns of different goat tissues and subcutaneous fat cells at different lipid induction stages. In addition, we transfect intramuscular and subcutaneous adipocytes separately by constructing overexpressed ACADL vectors and synthesizing Si-ACADL; finally, we observed the changes in oil red stained cell levels under the microscope, and qPCR detected changes in mRNA levels. Results: The results showed goat ACADL gene expressed in sebum fat. During adipocyte differentiation, ACADL gradually increased from 0 to 24 h of culture, and decreased. Overexpression of ACADL promoted differentiation of subcutaneous adipocytes in goat and inhibited their differentiation after interference. Conclusion: So, we infer ACADL may have an important role in positive regulating the differentiation process in goat subcutaneous adipocytes. This study will provide basic data for further study of the role of ACADL in goat subcutaneous adipocyte differentiation and lays the foundation for final elucidating of its molecular mechanisms in regulating subcutaneous fat deposition in goats.

The Study on Anti-obesity Effects of Gamiygin-tang Extract and Ferment (가미이진탕(加味二陳湯) 전탕액과 발효액이 항비만(抗肥滿)효과에 미치는 연구)

  • Chang, Sung Jin;Min, Deul Le;Park, Eun Jung
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.108-121
    • /
    • 2013
  • Objective This study was designed to investigate the effects of Gamiygin-tang (GY) extract (GYE) and fermented solution (GYF) on body weight, serum lipid level and adipocyte differentiation in high fat diet-fed obese mice. Materials and Methods High fat diet-fed obese mice and 3T3-L1 adipocytes mice were treated with GYE and GYF and obesity related markers were assessed. A cytotoxicity assay was carried out by MTS assay. Inhibitory effects of GYE and GYF on adipocyte differentiation were carried out by Oil Red O staining. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) and CCAAT/enhancer binding protein alpha (CEBP-${\alpha}$) were measured by real-time reverse transcriptase-polymerase chain reaction. The effects of GYE and GYF on the expression of adipocyte differentiation regulatory factors were also determined in relation to protein production/protein levels by western blotting. The anti obesity effects of GYE and GYF were measured in high fat-diet induced obese mice. Various factors were measured from the serum of the high fat-diet mice. Results Though GYE did not show toxicity at the concentration of 1mg/ml, GYF showed toxicity at the concentration of 1mg/ml. The GYE at 0.1 and 1mg/ml inhibited the differentiation of 3T3-L1 cells, and the GYF also inhibited the differentiation of 3T3-L1 cells. The effect of GYE on adipocyte differentiation factors including PPAR-${\gamma}$ and CEBP-${\alpha}$ was investigated and compared to the corresponding concentration levels of GYF. GYE and GYF both suppressed the RNA and protein levels of adipocyte differentiation factors. In the animal test both GYE and GYF reduced weight gain. GYE and GYF reduced blood cholesterol, TG and LDL levels. GYF better reduced blood cholesterol levels. Conclusions These results demonstrate that GYE and GYF exerts anti-obesity effect in 3T3-L1 cells and obese mice induced by high-fat diet.