Acknowledgement
This study is funded by Research and Innovation Team for the Protection and Utilization of Animal Germplasm Resources Research Project (1619003).
References
- Pini T, Raubenheimer D, Simpson SJ, Crean AJ. Obesity and male reproduction; placing the western diet in context. Front Endocrinol (Lausanne) 2021;12:622292. https://doi.org/10.3389/fendo.2021.622292
- Schwander B, Nuijten M, Evers S, Hiligsmann M. Replication of published health economic obesity models: assessment of facilitators, hurdles and reproduction success. Pharmacoeconomics 2021;39:433-46. https://doi.org/10.1007/s40273-021-01008-7
- Piche ME, Tchernof A, Despres JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res 2020;126:1477-500. https://doi.org/10.1161/CIRCRESAHA.120.316101
- Luo R, Chen L, Song X, et al. Possible role of GnIH as a novel link between hyperphagia-induced obesity-related metabolic derangements and hypogonadism in male mice. Int J Mol Sci 2022;23:8066. https://doi.org/10.3390/ijms23158066
- Yi X, Gao H, Chen D, et al. Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice. Am J Physiol Regul Integr Comp Physiol 2017;312:R501-10. https://doi.org/10.1152/ajpregu.00405.2016
- Deshpande SS, Nemani H, Pothani S, et al. Genetically inherited obesity and high-fat diet-induced obesity differentially alter spermatogenesis in adult male rats. Endocrinology 2019;160:220-34. https://doi.org/10.1210/en.2018-00569
- Ye L, Su ZJ, Ge RS. Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules 2011;16:9983-10001. https://doi.org/10.3390/molecules16129983
- Khodamoradi K, Khosravizadeh Z, Seetharam D, Mallepalli S, Farber N, Arora H. The role of leptin and low testosterone in obesity. Int J Impot Res 2022;34:704-13. https://doi.org/10.1038/s41443-022-00534-y
- Krause BR, Hartman AD. Adipose tissue and cholesterol metabolism. J Lipid Res 1984;25:97-110. https://doi.org/10.1016/S0022-2275(20)37830-5
- Du FM, Kuang HY, Duan BH, Liu DN, Yu XY. Effects of thyroid hormone and depression on common components of central obesity. J Int Med Res 2019;47:3040-9. https://doi.org/10.1177/0300060519851624
- Akpovi CD, Yoon SR, Vitale ML, Pelletier RM. The predominance of one of the SR-BI isoforms is associated with increased esterified cholesterol levels not apoptosis in mink testis. J Lipid Res 2006;47:2233-47. https://doi.org/10.1194/jlr.M600162-JLR200
- Ghanayem BI, Bai R, Kissling GE, Travlos G, Hoffler U. Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity. Biol Reprod 2010;82:96-104. https://doi.org/10.1095/biolreprod.109.078915
- Craig JR, Jenkins TG, Carrell DT, Hotaling JM. Obesity, male infertility, and the sperm epigenome. Fertil Steril 2017;107:848-59. https://doi.org/10.1016/j.fertnstert.2017.02.115
- Katib A. Mechanisms linking obesity to male infertility. Cent European J Urol 2015;68:79-85. https://doi.org/10.5173/ceju.2015.01.435
- Khodamoradi K, Parmar M, Khosravizadeh Z, Kuchakulla M, Manoharan M, Arora H. The role of leptin and obesity on male infertility. Curr Opin Urol 2020;30:334-9. https://doi.org/10.1097/MOU.0000000000000762
- Staub C, Johnson L. Review: Spermatogenesis in the bull. Animal 2018;12(s1):s27-35. https://doi.org/10.1017/S1751731118000435
- Hess RA, Renato de Franca L. Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 2008;636:1-15. https://doi.org/10.1007/978-0-387-09597-4_1
- Bhalla N. Meiosis: Is spermatogenesis stress an opportunity for evolutionary innovation? Curr Biol 2020;30:R1471-3. https://doi.org/10.1016/j.cub.2020.10.042
- Nishimura H, L'Hernault SW. Spermatogenesis. Curr Biol 2017;27:R988-94. https://doi.org/10.1016/j.cub.2017.07.067
- O'Donnell L, McLachlan RI, Wreford NG, Robertson DM. Testosterone promotes the conversion of round spermatids between stages VII and VIII of the rat spermatogenic cycle. Endocrinology 1994;135:2608-14. https://doi.org/10.1210/endo.135.6.7988449
- Baker SM, Plug AW, Prolla TA, et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 1996;13:336-42. https://doi.org/10.1038/ng0796-336
- Liu YJ, Liu C, Chang Z, et al. Degradation of the separase-cleaved Rec8, a meiotic cohesin subunit, by the N-end rule pathway. J Biol Chem 2016;291:7426-38. https://doi.org/10.1074/jbc.M116.714964
- Song Y, Chen M, Zhang Y, et al. Loss of circSRY reduces gammaH2AX level in germ cells and impairs mouse spermatogenesis. Life Sci Alliance 2023;6:e202201617. https://doi.org/10.26508/lsa.202201617
- Liang H, Esposito A, De S, et al. Homeostatic control of polo-like kinase-1 engenders non-genetic heterogeneity in G2 checkpoint fidelity and timing. Nat Commun 2014;5: 4048. https://doi.org/10.1038/ncomms5048
- Teerds KJ, de Rooij DG, Keijer J. Functional relationship between obesity and male reproduction: from humans to animal models. Hum Reprod Update 2011;17:667-83. https://doi.org/10.1093/humupd/dmr017
- Carvalho MG, Silva KM, Aristizabal VHV, et al. Effects of obesity and diabetes on sperm cell proteomics in rats. J Proteome Res 2021;20:2628-42. https://doi.org/10.1021/acs.jproteome.0c01044
- Li QL, Yang F, Zhou WY, et al. Quantification of testicular fat deposition in the evaluation of middle-aged overweight male infertility. MAGMA 2020;33:377-84. https://doi.org/10.1007/s10334-019-00803-w
- Amiri M, Ramezani Tehrani F. Potential adverse effects of female and male obesity on fertility: a narrative review. Int J Endocrinol Metab 2020;18:e101776. https://doi.org/10.5812/ijem.101776
- Martini AC, Molina RI, Ruiz RD, et al. Obesity and male fertility. Rev Fac Cien Med Univ Nac Cordoba 2012;69:102-10.
- Tortoriello DV, McMinn J, Chua SC. Dietary-induced obesity and hypothalamic infertility in female DBA/2J mice. Endocrinology 2004;145:1238-47. https://doi.org/10.1210/en.2003-1406
- Jedrzejczak P, Taszarek-Hauke G, Hauke J, Pawelczyk L, Duleba AJ. Prediction of spontaneous conception based on semen parameters. Int J Androl 2008;31:499-507. https://doi.org/10.1111/j.1365-2605.2007.00799.x
- Wang S, Qian Z, Ge X, et al. LncRNA Tug1 maintains blood-testis barrier integrity by modulating Ccl2 expression in high-fat diet mice. Cell Mol Life Sci 2022;79:114. https://doi.org/10.1007/s00018-022-04142-3
- Chu DS, Shakes DC. Spermatogenesis. Adv Exp Med Biol 2013;757:171-203. https://doi.org/10.1007/978-1-4614-4015-4_7
- Kostic TS, Stojkov NJ, Bjelic MM, Mihajlovic AI, Janjic MM, Andric SA. Pharmacological doses of testosterone upregulated androgen receptor and 3-Beta-hydroxysteroid dehydrogenase/delta-5-delta-4 isomerase and impaired leydig cells steroidogenesis in adult rats. Toxicol Sci 2011;121:397-407. https://doi.org/10.1093/toxsci/kfr063
- Motohashi M, Wempe MF, Mutou T, et al. In utero-exposed di(n-butyl) phthalate induce dose dependent, age-related changes of morphology and testosterone-biosynthesis enzymes/associated proteins of Leydig cell mitochondria in rats. J Toxicol Sci 2016;41:195-206. https://doi.org/10.2131/jts.41.195
- Choi Y, Lee EG, Lee G, et al. Amodiaquine promotes testosterone production and de novo synthesis of cholesterol and triglycerides in Leydig cells. J Lipid Res 2021;62:100152. https://doi.org/10.1016/j.jlr.2021.100152
- Wang X, Zou Z, Yang Z, et al. HIF 1 inhibits StAR transcription and testosterone synthesis in murine Leydig cells. J Mol Endocrinol 2018;62:1-13. https://doi.org/10.1530/JME-18-0148