The discrete cosine transform (DCT) is widely used in many signal processing areas, including image and speech data compression. In this paper, we investigate a fixed-point error analysis for fast DCT algorithms, namely, Lee [6], Hou [7] and Vetterli [8]. A statistical model for fixed-point error is analyzed to predict the output noise due to the fixed-point implementation. This paper deals with two's complement fixed-point data representation with truncation and rounding. For a comparison purpose, we also investigate the direct form DCT algorithm. We also propose a suitable scaling model for the fixed-point implementation to avoid an overflow occurring in the addition operation. Computer simulation results reveal that there is a close agreement between the theoretical and the experimental results. The result shows that Vetterli's algorithm is better than the other algorithms in terms of SNR.
This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.
본 논문에서는 저 전력 시스템에 적합한 고정 소수점 연산기로 구현된 다중 채널 디지털 보청기 알고리즘의 최적화 기법을 제시한다. 먼저 입력 신호를 고속 MDCT(modified discrete cosine transform) 방법을 사용하여 주파수 대역 분할함으로써 알고리듬의 복잡도를 최소화 하였고, MDCT 출력을 비선형 대역 분할 과정을 거쳐 채널별 그룹핑을 한 다음, 각 채널 신호를 난청인의 청각 손실 정도에 따라 구성한 라우드니스 보상 함수(loudness compensation function: LCF)표를 이용하여 이득을 조절하고, 최종적으로 TDAC 기법을 구현하는 IMDCT(Inverse MDCT) 변환을 거쳐 보상된 출력을 합성한다. 모든 과정은 16비트 정수 연산으로 구현되며, 이득을 계산하기 위해 측정되는 로그 단위의 연산 과정은 미리 계산된 테이블과 고속 탐색 알고리듬을 이용하여 구현된다. 구성된 보청기 알고리즘의 성능을 컴퓨터 시뮬레이션을 통해 평가하였다.
디지털 홀로그래픽 비디오 시스템을 제작하기 위해서는 디지털 홀로그램을 가능한 빠르게 생성하는 것이 중요하다. 본 논문에서는 디지털 홀로그램의 전체 좌표를 대상으로 반복적인 가산 연산을 이용하여 Fresnel 홀로그램의 생성 속도를 높이는 알고리듬을 제안한다. 디지털 홀로그램을 계산하기 위한 3차원 객체는 컴퓨터 그래픽(computer graphic, CG)으로 제작한 깊이영상(depth-map image)을 이용하였다. 본 논문에서 제안하는 알고리듬은 부동소수점 형식의 반복가산기법을 이용하여 디지털 홀로그램의 위상을 고속으로 계산하는 기법이다. 실험결과 제안한 알고리듬은 일반적인 CGH 수식을 이용한 기법의 70%, [3]에서 제안한 기법보다 30%이상 연산속도가 빨라졌다.
GPS에 의한 관측치는 시각오차, 전리층과 대류층 지연오차, 다중경로 오차와 같은 다양한 오차를 내포하고 있어서 GPS 관측치 위치계산시 일반적으로 최소자승해를 구하게 된다. GPS 관측치는 비선형 방정식을 만족하므로 최소자승해를 구하기 위해서는 비선형 Newton 알고리즘을 이용할 수도 있으나 대개 간편성과 효율성 때문에 선형화 알고리즘을 적용하게 된다. 본 연구에서는 비선형 Newton 알고리즘이나 선형화 알고리즘을 대체할 수 있는 부동점 알고리즘을 개발하여 그 유용성을 증명하였다. 비선형 Newton 알고리즘이나 선형화 알고리즘은 수렴속도가 빠른 장점을 가지고 있으나 초기값이 해와 근사하여야 한다는 단점이 있다. 반면 부동점 알고리즘은 수령속도는 다소 느리나 초기값이 대단히 부정확하여도 수렴가능한 장점이 있으므로 두 알고리즘을 적절히 혼용하는 것이 좋을 것이다.
이산 여현 변환(Discrete Cosine Transform: DCT)은 음성 및 영상 신호의 압축에 광범위하게 응용되고 있다. 본 논문에서는 $2^{m}$-포인트의 일반적인 경우로 확장이 가능한 새로운 고속 DCT 알고리즘과 구조를 제안한다. 제안한 알고리즘은 커널의 대칭성을 이용하여 N-포인트의 DCT를 N/2-포인트의 DCT로 나누어 처리하며 이를 재귀적으로 적용해 나간다. 제안한 알고리즘은 적은 덧셈 및 곱셈 연산을 통해 변환을 수행하며, 변환을 위해 통과해야 하는 곱셈 연산단의 수가 적고 대부분의 곱셈 연산이 흐름도상의 후반부에서 일괄적으로 수행되므로 고정 소수점 연산시에 발생할 수 있는 오차의 전파를 줄일 수 있다.
This paper is about the extraction of basis function for ECG signal processing. In the first step, it is assumed that ECG signal consists of linearly mixed independent source signals. 12 channel ECG signals, which were sampled at 600sps, were used and the basis function, which can separate and detect source signals - QRS complex, P and T waves, - was found by applying the fast fixed point algorithm, which is one of learning algorithms in independent component analysis(ICA). The possibilities of significant point detection and classification of normal and abnormal ECG, using the basis function, were suggested. Finally, the proposed method showed that it could overcome the difficulty in separating specific frequency in ECG signal processing by wavelet transform. And, it was found that independent component analysis(ICA) could be applied to ECG signal processing for detection of significant points and classification of abnormal beats.
This paper proposes variable incremental conductance(IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. The conventional perturbation & observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small step size reduces a tracking error in the steady state but slows a tracking speed in the transient state. Also, a large step size is fast a tracking speed but increases a tracking error. Therefore, this paper proposes variable IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve a tracking speed and accuracy, when operating point is far from the maximum power point(MPP), the step size uses maximum value and when a operating point is near from the MPP, the step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO and IC MPPT algorithm.
본 논문에서는 웨이블릿 변환을 통하며 QRS complex를 검출 하며, 32비트 고정 소수점 연산이 가능한 프로세서에도 동작하도록 알고리즘 최적화 기법을 제시한다. 먼저 입력 ECG 신호를 밴드 패스 필터를 통과 시키고, 3개의 서로 다른 웨이블릿 함수를 하나로 병합한 웨이블릿 함수를 이용하여 웨이블릿 변환을 하며, 다음으로 시간 평균 함수를 뒤에 마지막으로 QRS complex를 검출 한다. 제안 알고리즘은 MIT-BIH arrhythmia database에 적용하여 검증한다. 모든 과정은 32비트 고정 소수점 연산으로 구현되며, 삼각함수 같은 복잡한 연산은 테이블화 하였다. 검출 알고리즘은 컴퓨터 시뮬레이션을 통해 평가 한다.
The CSVM(Current Support Vector Machine) that is a digital architecture performing all phases of recognition process including kernel computing, learning, and recall of SVM(Support Vector Machine) on a chip is proposed. Concurrent operation by parallel architecture of elements generates high speed and throughput. The classification problems of bio data having high dimension are solved fast and easily using the CSVM. Quadratic programming in original SVM learning algorithm is not suitable for hardware implementation, due to its complexity and large memory consumption. Hardware-friendly SVM learning algorithms, kernel adatron and kernel perceptron, are embedded on a chip. Experiments on fixed-point algorithm having quantization error are performed and their results are compared with floating-point algorithm. CSVM implemented on FPGA chip generates fast and accurate results on high dimensional cancer data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.