Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2000.06a
/
pp.269-273
/
2000
This paper describes Active Noise Control (ANC) using Discrete Wavelet Transform (DWT) Domain Least Mean Square (LMS) Method. DWT-LMS is one of the transform domain input decorrelation LMS and improves the convergence speed of adaptive filter especially when the input signal is highly correlated. Conventional transform domain LMS's use Discrete Cosine Transform (DCT) because it offers linear band signal decomposition and fast transform algorithm. Wavelet transform can project the input signal into the several octave band subspace and offers more efficient sliding fast transform algorithm. In this paper, we propose Wavelet transform domain LMS algorithm and shows its performance is similar to DCT LMS in some cases using ANC simulation.
Least mean square(LMS) algorithm is one of the most popular algorithm in adaptive signal processing because of the simplicity and the small computation. But the convergence speed of time domain adaptive algorithm is slow when the spread width of eigen values is wide. Moreover we have to choose the step size well for convergency in this paper, we use adaptive algorithm of wavelet transform. And we propose a new wavelet based adaptive algorithm of wavelet transform. And we propose a new wavelet based adaptive algorithm with variable step size, which Is linear to absolute value of error signal. We applied this algorithm to adaptive noise canceler. Simulation results are presented to compare the performance of the proposed algorithm with the usual algorithms.
The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.12
/
pp.2706-2713
/
1997
The fast implementation algorithm of M-band discrete wavelet transform is propsed using the factorization of lossless matrix when the length of discrete orthogonal wavelet bases equals to 2M. In computational complexity when direct filtering method is employed, the number of multiplicationand addition is (2M$^{2}$) and (2M$^{2}$ -M), respectively. But by proposed algorithm, it can be reduced to (M$^{2}$+M) and (M$^{2}$+2M-1), respectively. and it is possible to reduce the compuatational complexity further when unitary matrix employed to design the discrete or thogonal wavelet basis has the fast algorithm.
The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.179-182
/
2004
무선통신분야에서 LMS5(Least Mean Square) 알고리즘은 식이 간단하고 계산량이 비교적 적기 때문에 널리 사용되고 있다. 그러나 시간영역에서 처리할 경우 입력신호의 고유치 변동폭이 넓게 분포되어 수렴속도가 저하하는 문제점이 있다. 이를 해결하기 위하여 신호를 FFT(Fast Fourier Trasnform)나 DCT(Discrete Cosine Transform)로 변환하여 신호간의 상관도를 제거함으로써 시간영역에서 LMS알고리즘을 적용할 때 보다 수렴속도를 크게 향강시킬 수 있다. 본 논문에서는 수렴속도 향상을 위해 시간영역의 적응 알고리즘을 직교변환인 고속웨이브렛(wavelet)변환을 이용하여 변환영역에서 수행하며, 짧은 필터계수를 가지는 DWT(Discrete Wavelet Transform)특성에 맞는 Fast running FIR 알고리즘을 이용하여 WTLMS(Wavelet Transform LMS)적응알고리즘을 통신시스템에 적용한다. 적응 알고리즘의 성능향상을 위하여 시간에 따라 적응상수의 크기를 가변시켜 수렴 초기에는 큰 적응상수로 따른 수렴이 가능하도록 하고 점차 적응상수의 크기를 줄여서 misadjustment도 줄이는 방법의 적응 알고리즘을 제안하였다. 제안한 알고리즘을 실제로 적응잡음제거기(adaptive noise canceler)에 적용하여 컴퓨터 시뮬레이션을 하였으며, 각 알고리즘들의 계산량, 수렴속도를 이용하여 각각 비교, 분서하여 그 성능이 우수함을 입증하였다.
The meaningful speech sound block classification provides very important information in the speech recognition. The following technique of the classification is based on the DWT (discrete wavelet transform), which will provide a more fast algorithm and a useful, compact solution for the pre-processing of speech recognition. The algorithm is implemented to the unvoiced/voiced classification and the denoising.
A theory of binary wavelets has been recently proposed by using two-band perfect reconstruction filter banks over binary field . Binary wavelet transform (BWT) of binary images can be used as an alternative to the real-valued wavelet transform of binary images in image processing applications such as compression, edge detection, and recognition. The BWT, however, requires large amount of computations since its operation is accomplished by matrix multiplication. In this paper, a fast BWT algorithm which utilizes filtering operation instead or matrix multiplication is presented . It is shown that the proposed algorithm can significantly reduce the computational complexity of the BWT. For the decomposition and reconstruction or an N ${\times}$ N image, the proposed algorithm requires only 2LN$^2$ multiplications and 2(L-1)N$^2$addtions when the filter length is L, while the BWT needs 2N$^3$multiplications and 2N(N-1)$^2$additions.
The Journal of Korean Institute of Communications and Information Sciences
/
v.31
no.11C
/
pp.1107-1119
/
2006
Data transmission experiences multiplicative distortion in frequency nonselective fading channel. This distortion occurs in OFDM communication channel and can be compensated using an equalizer. Usually, in the case of LMS equalizer, eigenvalue distribution of training signal is enlarged. Large eigenvalue distribution causes principally the performance of a communication system to be deteriorated. This paper proposes a new algorithm that shows the same performance as the existing fast wavelet transform algorithm with less computational complexity. The proposed algorithm was applied to an adaptive equalizer of OFDM communication system. Matlab simulation results show a better performance than the existing one. The proposed algorithm was implemented in VHDL and simulated.
The Wavelet Transform has been applied in mathematics and computer sciences. Numerous studies have proven its advantages in image processing and data compression, and have made it a basic encoding technique in data compression standards like JPEG2000 and MPEG-4. Software implementations of the Discrete Wavelet Transform (DWT) appears to be the performance bottleneck in real-time systems in terms of performance. And hardware implementations are not flexible. Therefore, FPGA implementations of the DWT has been a topic of recent research. The goal of this thesis is to investigate of FPGA implementations of the DWT Processor for image compression applications. The DWT processor design is based on the Lifting Based Wavelet Transform Scheme, which is a fast implementation of the DWT The design uses various techniques. The DWT Processor was simulated and implemented in a FLEX FPGA platform of Altera
In this paper, we propose a wavelet based adaptive algorithm which improves the convergence speed and reduces computational complexity using the fast running FIR filtering efficiently We compared the performance of the proposed algorithm with time and frequence domain adaptive algorithm using computer simulation of adaptive noise canceler based on synthesis speech. As the result, the proposed algorithm is suitable for adaptive signal processing area using speech or acoustic field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.