• Title/Summary/Keyword: Fast Walsh Transform

Search Result 33, Processing Time 0.024 seconds

Orthogonal Filter Design Using Improved Fast Wash Transform Algorithm (개선된 고속월쉬변환 알고리즘을 이용한 직교필터 설계)

  • Shin, Seung-Kwon;Cho, Young-Ho;Kim, Tai-Hoon;Jung, Je-Wook;Lee, Han-Seok;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.6
    • /
    • pp.272-282
    • /
    • 2001
  • This paper developed improved fast Walsh transform based on dyadic-ordered fast Walsh transform, then regenerated signal flow graph of improved fast Walsh transform, and used it for digital filtering, and then measured fundamental frequency and harmonics for current and voltage signals of power system. Using the improved fast Walsh transform, we present a new algorithm which reduces the computational amount, and it can consequently calculate the real and imaginary components for current and voltage signals of power system in sampling intervals. The calculation amount is reduced to 2(N-1) at N samples to measure full harmonics using developed algorithm. When, in single harmonic measuring, it needs only 2(log2N-1) additions and subtractions.

  • PDF

The orthogonal filter design using improved fast Walsh transform (개선된 고속월쉬변환에 의한 직교필터 설계)

  • Chung, Je-Wook;Cho, Young-Ho;Lee, Han-Seok;Park, Jun-Hoon;Shim, Jae-Sun;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2620-2623
    • /
    • 2000
  • The standard approach consists of using correlation of orthogonal functions in digital filtering, such as well-known FFT(Fast Fourier Transform) and FWT(Fast Walsh Transform). But it needs much calculations, multiplications and additions. The calculation amount is m $log_2m$ in the general case. Therefore, this requires high speed processors to calculate in real time, which can calculate floating point. This study developed improved fast Walsh transform based on dyadic-ordered fast Walsh transform, then regenerated signal flow graph of improved fast Walsh transform, and used it for digital filtering, and then measured fundamental frequency and harmonics for current and voltage signals of power system.

  • PDF

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF

Analysis and Optimal Control of Linear Time-delay Systems via Fast Walsh Transform (고속윌쉬변환에 의한 선형시지연계의 해석 및 최적제어)

  • Han, Sang-In;Lee, Myeong-Gyu;Kim, Jin-Tae;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.601-606
    • /
    • 1999
  • A Walsh function method is proposed in this report for the analysis and optimal control of linear time-delay systems, which is based on the Picard's iterative approximation and fast Walsh transformation. In this research, the following results are obtained: 1) The differential and integral equation can be solved by transforming into a simple algebraic equation as it was possible with the usual orthogonal function method: 2) General orthogonal function methods require usage of Walsh operational matrices for delay or advance and many calculations of inverse matrices, which are not necessary in this method. Thus, the control problems of linear time-delay systems can be solved much faster and readily.

  • PDF

Optimal Control of Distributed Parameter Systems Via Fast WALSH Transform (고속 WALSH 변환에 의한 분포정수계의 최적제어)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Lee, Seung;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.464-472
    • /
    • 2001
  • This study uses distributed parameter systems as the spatial discretization technique, modelling in lumped parameter systems, and applies fast WALSH transform and the Picard's iteration method to high order partial differential equations and matrix partial differential equations. This thesis presents a new algorithm which usefully exercises the optimal control in the distributed parameter systems. In exercising optimal control of distributed parameter systems, excellent consequences are found without using the existing decentralized control or hierarchical control method. This study will help apply to linear time-varying systems and non-linear systems. Further research on algorithm will be required to solve the problems of convergence in case of numerous applicable intervals.

  • PDF

A Study on Korean Speech Analysis using Walsh Transform (Walsh변환을 이용한 한국어 숫자음 음성분석에 관한 연구)

  • 김계현;김준현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.251-256
    • /
    • 1988
  • This work describes a speech analysis of Korean number ('1'-'10') which are spoken by several speakers using Fast Walsh Transform(FWHT) method. FWHT includes only addition and subtraction operations, therefore faster and needs less memory than FFT(Fast Fourier Transfifrm) or LPC(Linear Predictive Coding) analysis method. We have investigated that FWHT method can find speaker independent feature(which represents same cue about some word independent of different speakers) The results of this experiment, the 70% of same words(korean number '2')which spoken by several speakers have had slmilar patterns.

  • PDF

A Pipelined Hadamard Transform Processor (파이프라인 방식에 의한 아다마르 변환 프로세서)

  • 황영수;윤대희;차일환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1617-1623
    • /
    • 1989
  • The introduction of the fast Fourier transform(FFT),an efficient computational algorithm for the discrete Fourier transform(DFT) by Cooley and Tukey(1965), has brought to the limelight various other discrete transforms. Some of the analog functions from which these transforms have been derived date back to the early 1920's, for example, Walsh functions (Walsh, 1923) and Hadamard Transform(Enomoto et al, 1965). Fast algorithms developed for the forward transform are equally applicable, exept for minor changes, to the inverse transform. In this paper, we present a simple pipelined Hadamard matrix(HM) which is used to develop a fast algorithm for the Hadamard Processor (HP). The Fast Hadamard Transform(FHT) can be derived using matrix partitioning techniques. The HP system is incorporated through a modular design which permits tailoring to meet a wide range of video data link applications. Emphasis has been placed on a low cost, a low power design suitable for airbone system and video codec.

  • PDF

Unknown input observer design via fast Walsh transform and Walsh function's differential (고속월쉬변환과 월쉬함수 미분연산식에 의한 미지입력 관측기 설계)

  • Kim, Jin-Tae;Ahn, Pius;Kim, Min-Hyung;Lee, Myung-Kyu;Kim, Jae-Il;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2611-2613
    • /
    • 2000
  • This paper deals with a novel approach to unknown inputs observer(UIO) design for linear time-invariant dynamical systems using a fast Walsh transform and Walsh function's differential operation. Generally, UIO has a derivation of system outputs which is not available from the measurement directly. And it is an obstacle to estimate the unknown inputs properly when unexpected measurement noises are presented. Therefore, this paper propose an algebraic approach to eliminate such problems by using a Walsh function's differential operation.

  • PDF

A Study on the Analysis and Optimal Control of Nonlinear Systems via Walsh Function (월쉬함수에 의한 비선형계의 해석 및 최적제어에 관한 연구)

  • Kim, Jin-Tae;Kim, Tae-Hun;Lee, Myeong-Gyu;An, Du-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.354-362
    • /
    • 2000
  • This paper presents the new adaptive optimal scheme for the nonlinear systems, which is based on the Picard's iterative approximation and fast Walsh transform. It is well known that the Walsh function approach method is very difficult to apply for the analysis and optimal control of nonlinear systems. However, these problems can be easily solved by the improvement of the previous adaptive optimal scheme. The proposed method is easily applicable to the analysis and optimal control of nonlinear systems.

  • PDF

Realization of Fast Walsh Transform by using a micro-computer (마이크로 컴퓨터에 의한 Fast Walsh Transform에 관한 연구)

  • Yoo, S.J.;Oh, M.H.;Chai, Y.M.;Choi, S.W.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.138-141
    • /
    • 1989
  • In resent years, aided by the power and capability of digital computation, the techniques of Walsh Transform have been exploited for applications in commun- ication and signal processing. This paper presents an approach of FWT by using a 16- bit word-length micro- computer. This FWT implements an in-placed decimation-in-sequency algorithm which improves processing speed and memory storage. Several examples illustrate the process and demonstrate the power spectrum of FWT and that of FFT for the waveforms

  • PDF