• Title/Summary/Keyword: Fast Computation

Search Result 750, Processing Time 0.031 seconds

Fast Local Indoor Map Building Using a 2D Laser Range Finder (2차원 레이저 레이진 파이더를 이용한 빠른 로컬 실내 지도 제작)

  • Choi, Ung;Koh, Nak-Yong;Choi, Jeong-Sang
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.99-104
    • /
    • 1999
  • This paper proposes an efficient method constructing a local map using the data of a scanning laser range finder. A laser range finder yields distance data of polar form, that is, distance data corresponding to every scanning directions. So, the data consists of directional angle and distance. We propose a new method to find a line fitting with a set of such data. The method uses Log-Hough Transformation. Usually, map building from these data requires some transformations between different coordinate systems. The new method alleviates such complication. Also, the method simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform method. To show the efficiency of the proposed method, it is applied to find a local map using the data from a laser range finder PLS(Proximity Laser Scanner, made by SICK).

  • PDF

Design of Real-Time Newral-Network Controller Based-on DSPs of a Assembling Robot (DSP를 이용한 조립용 로봇의 실시간 신경회로망 제어기 설계)

  • 차보남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.113-118
    • /
    • 1999
  • This paper presents a new approach to the design of neural control system using digital signal processors in order to improve the precision and robustness. Robotic manipulators have become increasingly important n the field of flexible automation. High speed and high-precision trajectory tracking are indispensable capabilities for their versatile application. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C31 is used in implementing real time neural control to provide an enhanced motion control for robotic manipulators. In this control scheme, the networks introduced are neural nets with dynamic neurons, whose dynamics are distributed over all the network nodes. The nets are trained by the distributed dynamic back propagation algorithm. The proposed neural network control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the neural controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Optimization of Satellite Upper Platform Using the Various Regression Models (다양한 회귀모델을 이용한 인공위성 플랫폼의 최적화)

  • Jeon, Yong-Sung;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1430-1435
    • /
    • 2003
  • Satellite upper platform is optimized by response surface method which has non-gradient, semi-glogal, discrete and fast convergency characteristics. Sampling points are extracted by design of experiments using Central Composite Method and Factorial Design. Also response surface is generated by the various regression functions. Structure analysis is execuated with regard for static and dynamic environment in launching stage. As a result response surface method is superior to other optimization method with respect to optimum value and cost of computation time. Also a confidence is varified in the various regression models.

  • PDF

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • Kim, Jong-Man;Hwang, Jong-Sun;Kim, Young-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion, In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed,

  • PDF

Bianry Searching Algorithm for HIgh Sped Scene Change Indexing of Moving Pictures (동영상의 고속 장면분할을 위한 이진검색 알고리즘)

  • Kim, Seong-Cheol;O, Il-Gyun;Jang, Jong-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1044-1049
    • /
    • 2000
  • In detection of a scene change of the moving pictures which has massive information capacity, the temporal sampling method has faster searching speed than the sequential searching method for the whole moving pictures, yet employed searching algorithm and detection interval greatly affect searching time and searching precision. In this study, the whole moving pictures were primarily retrieved by the temporal sampling method. When there exist a scene change within the sampling interval, we suggested a fast searching algorithm using binary searching and derived an equation formula to determine optimal primary retrieval which can minimize computation, and showed the result of the experiment on MPEG moving pictures. The result of the experiment shows that the searching speed of the suggested algorithm is maximum 13 times faster than the one of he sequential searching method.

  • PDF

Blind Neural Equalizer using Higher-Order Statistics

  • Lee, Jung-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.174-178
    • /
    • 2002
  • This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system fur the original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer provides fast and easy teaming, due to the structural efficiency and excellent recognition-capability of R3F neural network. Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind MLP equalizer, while requiring the relatively smaller computation steps in tranining.

Color Image Quantization Using Local Region Block in RGB Space (RGB 공간상의 국부 영역 블럭을 이용한 칼라 영상 양자화)

  • 박양우;이응주;김기석;정인갑;하영호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.83-86
    • /
    • 1995
  • Many image display devices allow only a limited number of colors to be simultaneously displayed. In displaying of natural color image using color palette, it is necessary to construct an optimal color palette and map each pixel of the original image to a color palette with fast. In this paper, we proposed the clustering algorithm using local region block centered one color cluster in the prequantized 3-D histogram. Cluster pairs which have the least distortion error are merged by considering distortion measure. The clustering process is continued until to obtain the desired number of colors. Same as the clustering process, original color image is mapped to palette color via a local region block centering around prequantized original color value. The proposed algorithm incorporated with a spatial activity weighting value which is smoothing region. The method produces high quality display images and considerably reduces computation time.

Expected Matching Score Based Document Expansion for Fast Spoken Document Retrieval (고속 음성 문서 검색을 위한 Expected Matching Score 기반의 문서 확장 기법)

  • Seo, Min-Koo;Jung, Gue-Jun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • Many works have been done in the field of retrieving audio segments that contain human speeches without captions. To retrieve newly coined words and proper nouns, subwords were commonly used as indexing units in conjunction with query or document expansion. Among them, document expansion with subwords has serious drawback of large computation overhead. Therefore, in this paper, we propose Expected Matching Score based document expansion that effectively reduces computational overhead without much loss in retrieval precisions. Experiments have shown 13.9 times of speed up at the loss of 0.2% in the retrieval precision.

  • PDF

An efficient algorithm to measure the insurance risk of casuality insurance company using VaR methodology

  • Ban, Joon-Hwa;Hwang, Hyun-Cheol;Ki, Ho-Sam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.2
    • /
    • pp.137-149
    • /
    • 2012
  • We propose an efficient method to measure the insurance risk of causality insurance companies by using the CreditRisk+ methodology. This method is superior to previous methods in several aspects. Its computation speed is very fast and the input data form is simple. It is able to aggregate both credit risk and insurance risk, so the insurance company can manage the risk in combined manner. In this paper, we propose a mathematical method to obtain the aggregate loss distribution of portfolios having correlation among products or business lines as a general case, and then suggest its implementation algorithm. Finally we apply this method to the real data from Korea Insurance Development Institute (KIDI) and discuss its availability to real applications.

A PRICING METHOD OF HYBRID DLS WITH GPGPU

  • YOON, YEOCHANG;KIM, YONSIK;BAE, HYEONG-OHK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.277-293
    • /
    • 2016
  • We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.