This article surveys the fashion forecasting industry in Korean domestic markets. With the rise of new media and devices with high technology, the paradigm of fashion trends forecasting systems has dramatically changed. New perspectives of trend forecasting are required to understand the trend flow and consumer behavior of the MZ generation. The research questions are as follows: 1) Major trend forecasting companies studied the development of their strategies and new forecasting methods. 2) The consumers' needs in the domestic market were analyzed. The influence of the trend companies' forecasting on the market was investigated. The results are as follows: 1) International trend forecasting significantly affected the domestic market. The concordance rate between consumers' online searches about fashion trends was approximately 70.14%. The match rate by category is as follows: The highest rate, 85.06% is from pattern and print, color is 83.92%, the item is 80.39%, and style is 54.32%. 2) Specialized information such as the Pantone color chart is being widely consumed, leading to a trend among the masses. 3) The Korean-specific socio-cultural background has an impact on domestic trends.
In today's intensifying global competition, Korean fashion industry is relying on only qualitative data for feasibility study of future projects and developmental plan. This study was conducted in order to support establishment of a scientific and rational management system that reflects market demand. First, fashion market size was limited to the total amount of expenditure for fashion clothing products directly purchased by Koreans for wear during 6 months in spring and summer and 6 months in autumn and winter. Fashion market forecasting model was developed using statistical forecasting method proposed by previous research. Specifically, time series model was selected, which is a verified statistical forecasting method that can predict future demand when data from the past is available. The time series for empirical analysis was fashion market sizes for 8 segmented markets at 22 time points, obtained twice each year by the author from 1998 to 2008. Targets of the demand forecasting model were 21 research models: total of 7 markets (excluding outerwear market which is sensitive to seasonal index), including 6 segmented markets (men's formal wear, women's formal wear, casual wear, sportswear, underwear, and children's wear) and the total market, and these markets were divided in time into the first half, the second half, and the whole year. To develop demand forecasting model, time series of the 21 research targets were used to develop univariate time series models using 9 types of exponential smoothing methods. The forecasting models predicted the demands in most fashion markets to grow, but demand for women's formal wear market was forecasted to decrease. Decrease in demand for women's formal wear market has been pronounced since 2002 when casualization of fashion market intensified, and this trend was analyzed to continue affecting the demand in the future.
This paper proposes a computation model of the quantity supplied to optimize inventory costs for the fast fashion. The model is based on a forecasting, a store and production capacity, an assortment planning and quick response model for fast fashion retailers, respectively. It is critical to develop a standardized business process and mathematical model to respond market trends and customer requirements in the fast fashion industry. Thus, we define a product supply model that consists of forecasting, assortment plan, store capacity plan based on the visual merchandising, and production capacity plan considering quick response of the fast fashion retailers. For the forecasting, the decomposition method and multiple regression model are applied. In order to optimize inventory costs. A heuristic algorithm for the quantity supplied is designed based on the assortment plan, store capacity plan and production capacity plan. It is shown that the heuristic algorithm produces a feasible solution which outperforms the average inventory cost of a global fast fashion company.
The purpose of this study was to investigate color planning method for apparel fashion de-sign and to present the method of analysis of green color. Theoretical backgrouds of color planning for fashion design were scrutinized by documentary studies Fashion color planning has been developed through 4 steps: analysis of color environment analysis of color psy-chology presentation of coordination appli-cation to fashion design. Green color environment consisted of mar-ket informations and forecast informations The former were collected by color samples which were used for women's apparel of national brands from '93 spring/summer to '96 spring/summer and the latter were analyzed by fashion forecasting books. Green color psy-chology was investigated through the docu-mentary studiess. image of green color and these expressed in fashion were revealed through documentary studies. The results of this study were as follow: 1. 117 green color samples were collected from domestic womens brand. The character-istic of samples were the yellow green in hue and pale light bright in tone. forecast infor-mation was collected through fashion forecasting books from abroad and adaption of forecast information was investigated by mak-ing a comparison forecasting information be-tween market information. In consequence national market colors reflected the forecast information in concurrence with the character-istic colors of national women's apparel. 2. Affirmative images of green were nature youth health and abundance and negative images were extraordinary misfortune wind-fall. in these images nature youth and health were mostly used in fashion.
The field of textile and fashion is regard to be sensitive to trend, however, the professional fashion information planning company for trend forecasting has not settled down in Korea. This study was designed to propose systemizing for fashion trend information planning in domestic fashion information service market. The empirical research was conducted by analysing in-depth interview data and news-scrap contents about each fashion information planning company. The result are as follows; First, fashion information service showed a little difference according to the type of fashion information companies, but they provided not only general fashion trends but also external market environmental information, survey-based consumer information and various segmented market research reports including academic information. Second, the fashion information planning process is largely divided into 3 stages; trend analysis, trend forecasting, trend application. The trend application step is the stage which connects the fashion information service industry to the fashion business. Thirdly, as a result of the competitive power evaluation for fashion information planning, the domestic fashion information planning companies came to reveal the fact that the possibility of carrying out and information analysis power were weak, however, how to present trend information had a relatively competitive. Consequently, this study is expected to play a role in understanding the importance of fashion trend information, and further ahead it would be helpful to organize the curriculum of fashion information planning subject in order to educate the future fashion executives.
Due to the nature of fashion design that responds quickly and sensitively to changes, accurate forecasting for upcoming fashion trends is an important factor in the performance of fashion product planning. This study analyzed the major phenomena of fashion trends by introducing text mining and a big data analysis method. The research questions were as follows. What is the key term of the 2010SS~2019FW fashion trend? What are the terms that are highly relevant to the key trend term by year? Which terms relevant to the key trend term has shown high frequency in news articles during the same period? Data were collected through the 2010SS~2019FW Pre-Trend data from the leading trend information company in Korea and 45,038 articles searched by "fashion+material" from the News Big Data System. Frequency, correlation coefficient, coefficient of variation and mapping were performed using R-3.5.1. Results showed that the fashion trend information were reflected in the consumer market. The term with the highest frequency in 2010SS~2019FW fashion trend information was material. In trend information, the terms most relevant to material were comfort, compact, look, casual, blend, functional, cotton, processing, metal and functional by year. In the news article, functional, comfort, sports, leather, casual, eco-friendly, classic, padding, culture, and high-quality showed the high frequency. Functional was the only fashion material term derived every year for 10 years. This study helps expand the scope and methods of fashion design research as well as improves the information analysis and forecasting capabilities of the fashion industry.
Fashion companies are using a big data approach as a key strategic analysis to predict and forecast sales. This study investigated the effectiveness of the past sales, web search volume, information amount, brand promotion, and the advertising endorser on the sales forecasting model. The study conducted the autoregressive distributed lag (ARDL) time series model using the internal and external social big data of a national fashion brand. Results indicated that the brand's past sales, search volume, promotion, and amount of advertising endorser information amount significantly affected the sales forecast, whereas the brand's advertising endorser search volume and information amount did not significantly influence the sales forecast. Moreover, the brand's promotion had the highest correlation with sales forecasting. This study adds to information-searching behavior theory by measuring consumers' brand involvement. Last, this study provides digital marketers with implications for developing profitable marketing strategies on the basis of consumers' interest in the brand and advertising endorser.
The purpose of this study is to analyze women apparel's colors in the Seoul, Beijing, and Tokyo collections and examine the color characteristics of three collections through comparison with trend colors suggested by Carlin, a color forecasting group. A literature review and an empirical study were used for methodology. The literature review examined the status and characteristics of the three collections, a fashion color forecast, and F/W 2014-15 trend colors by Carlin based on previous researches and literature data on fashion color. The empirical study extracted and analyzed 2014-15 F/W women's ready-to-wear collections in Seoul, Tokyo, and Beijing and compared the result with trend colors by Carlin. First, the colors of women's apparel were analyzed in the Seoul, Beijing, and Tokyo collections. All three collections commonly used achromatic colors and the percentage of Bk, Gy, Wh, R, and B colors was high. All three collections used achromatic colors frequently for the main color and sub colors. For accent colors, while the application of achromatic colors was high in the Seoul collection, the application of chromatic colors was high in the Tokyo and Beijing collections. Second, women's apparel colors in the Seoul, Beijing, and Tokyo collections were compared with trend colors suggested by Carlin. All three collections highly reflected Bk, Wh, and R (Carlin's forecasting color of 'Splendor') and B (forecasting color of 'Boreal'). However, the reflection of metallic colors suggested as a keyword of 'Brave New World' and Pk color of 'Sensitive' and 'Boreal' were a bit low.
Sales forecasting is crucial for many retail operations. For apparel retailers, accurate sales forecast for the next season is critical to properly manage inventory and plan their supply chains. The challenge in this increases because apparel products are always new for the next season, have numerous variations, short life cycles, long lead times, and seasonal trends. In this study, a sales forecasting model is proposed for apparel products using machine learning techniques. The sales data pertaining to outerwear items for four years were collected from a Korean sports brand and filtered with outliers. Subsequently, the data were standardized by removing the effects of exogenous variables. The sales patterns of outerwear items were clustered by applying K-means clustering, and outerwear attributes associated with the specific sales-pattern type were determined by using a decision tree classifier. Six types of sales pattern clusters were derived and classified using a hybrid model of clustering and decision tree algorithm, and finally, the relationship between outerwear attributes and sales patterns was revealed. Each sales pattern can be used to predict stock-keeping-unit-level sales based on item attributes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.