• Title/Summary/Keyword: Farm automation

Search Result 51, Processing Time 0.029 seconds

Adjusting moisture contents of the substrates on the mushroom bottle cultivation by the device Load cell (로드셀을 장치한 버섯 병재배용 배지의 수분조절 방법)

  • Cheong, Jong-Chun;Lee, Chan-Jung;Moon, Ji-Won;Kweon, Jae-Gun;Kim, Hyuck-joo
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.233-236
    • /
    • 2015
  • This report is the result of devising a method for utilizing the device of the load cell to maintain a constant water content of the medium every day to prepare a cultural substrates with the mixer for growing mushrooms bottle cultivation. A load cell was device under the medium mixer. It is developed when the device reaches the weight calculated as amount of substrate bottled and number of the bottle, it is automatically terminated by water injection. In addition, measuring the water content of each medium and the total weight of the medium reaches the target moisture content were calculated by using the program Cheong et al. (2015). Enter the total weight of the medium on the display unit of the load cell, when starting the water supply to reach the weight-based mixing media, the water supply is stopped. This method can improve the convenience by reducing the user's trouble in repeated work medium prepared by automating water supply. The suitable moisture content of the mixed medium for some kind of mushroom can be improved by the composition accuracy. And mycelial culture period, primordial period, mushroom growing period is maintained even of the medium can be produced stably. Therefore, it is possible to achieve a stable management of the mushroom farm according to mushroom quality and quantity stable throughout the year.

Analysis of Patent Trends in Agricultural Machinery (최신 농업기계 특허 동향 조사)

  • Hong, S.J.;Kim, D.E.;Kang, D.H.;Kim, J.J.;Kang, J.G.;Lee, K.H.;Mo, C.Y.;Ryu, D.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.99-111
    • /
    • 2021
  • The connected farm that agricultural land, agricultural machinery and farmer are connected with an IoT gateway is in the commercialization stage. That has increased productivity, efficiency and profitability by intimate information exchange among those. In order to develop the educational program of intelligent agricultural machinery and the agricultural machinery safety education performance indicator, this study analyzed patent trends of agricultural machine with unmanned technology used in agriculture and efficiency technology applied advanced technologies such as ICT, robots and artificial intelligence. We investigated and analyzed patent trends in agricultural machinery of Korea, the USA and Japan as well as the countries in Europe. The United States is an advanced country in the field of unmanned technology and efficiency technology used in agriculture. Agricultural automation technology in Korea is insufficient compared to developed countries, which means rapid technological development is needed. In the sub-fields of field automation technology, path generation and following technology and working machine control technology through environmental awareness have activated.

Design and implementation of agriculture system for Internet Of Things (사물인터넷을 위한 농장 시스템 설계 및 구현)

  • Lim, Soon-Ja
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8896-8900
    • /
    • 2015
  • Recently, various career paths draw young workers from twenty to forty to the metro city in Korea. The korea's agriculture sector has decrease in population and productivity which result a threat for it to become an aging society. Also, our country has a difficulty in a tough competition with other countries through agricultural market-opening such as WTO and FTA. In this paper, we introduce a technology using open-source project including Raspberry that easily accessible and applicable to an agricultural industry. In other words, as we build a device monitoring the production environment, everyone can use agricultural sector through an IoT technology, solve the problem with a labor shortage through production process automation, check the condition of the agricultural environment in real time, enhance the quality of the agricultural product by corresponding a certain condition, and improve the competitiveness through a competitive price comparing to the worldwide farm product. Also, we find a way to use data to the other business through data collection and analysis in a process of using the IoT.

Automatic Control System of Vertical Agitation Heater for Controlling Temperature of Greenhouse (시설하우스 온도 조절을 위한 수직형 교반 히터 자동제어 시스템)

  • Kwak, Yun-Ah;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.623-628
    • /
    • 2015
  • As the current heating control of the greenhouse is located in specifically designed place, there is an inevitable difference in degrees depending on the latitude in it. Even though it is necessary to maintain the proper temperature in the greenhouse producing vegetables and fruit plants, the difference between ups and downs in the facilities results in the increasing energy consumption to both warm and cool down the facilities. The newest heating method, automatic control system of vertical agitation heater, which manipulates the inner air circulation efficiently, is suggested in this paper. The proposed system utilizes both the upper temperature and the lower temperature, and controls the air circulation fan and heating independently, so that maximizes the efficiency of heating with the minimum energy and implements predictable planning of farm products.

A Study on the Improvement of Agricultural Facility Legislation (농업용 시설의 건축 및 이용 법령 개선연구)

  • Lee, Won;Jang, Woo-Suk;Kwon, Hyung-Dun;Song, Jae-Il;Kim, Ji-Suk;Jung, Nam-Su
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.73-79
    • /
    • 2013
  • As facilities performing the production, processing, preservation, and shipment of agricultural products; agricultural facilities are categorized into planting facilities and livestock facilities based on the management target. Agricultural facilities are set in farmlands, and facility users mainly complain about the legal or institutional restrictions on farm rather than their own facilities itself. From 2009 to 2012, the Ministry of Agriculture Food and Rural Affairs (MAFRA) published the "Casebook of farmer Complaints on Farmlands" in order to help answer farmers' questions and support public workers' workloads. However, contents related to agricultural facility installed in farmland are currently not dealt with in particular. Among agricultural facilities, demands of property rights with livestock facilities have risen due to construction permissions, operational restrictions, and high initial investment costs; and relevant laws were revised and are now being executed. However, for planting facilities such as mushroom facilities, ginseng facilities, and greenhouses; farmer complaints related to property rights are constantly increasing because revisions to relevant laws are not being made despite the rising diversity of construction materials through technical developments as well as the rising scale of assets-i.e. mechanization, automation, and the application of New Regeneration Energies according to capital influx. In this study, the current state of relevant agricultural facility legislation were organized and their drawbacks deduced in order to propose improvements of Agricultural Facility Legislation. The result of interviewing with public workers and farmers show that agricultural facilities should be regarded as extensions of farmlands rather than as facilities built in land where development actions were being taken. Alternatives able to reflect these opinions were suggested through expert consultation.

Designing and Developing an Automatic Robot System for the Itemized Loading of Apple Boxes at the Agriculture Products Processing Center (거점산지유통센터의 사과박스 구분적재 자동화 로봇 시스템 설계 및 구현)

  • Kim, Myung-Sic;Kim, Kyu-Ik;Ryu, Keun Ho
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.689-698
    • /
    • 2015
  • Currently, the itemized box loading operation at the Agriculture Products Processing Center which distributes agricultural products for the region is carried out manually. The process of loading agricultural products requires great manpower and had been resolved through the part-time employment of the residents of farm villages. However, recently it has become quite difficult to secure manpower as the aging within the rural community has been intensified. Hence, the necessity for countermeasures such as facility automation or use of robots have become necessary. This study suggests an automatic robot system for the itemized loading of apple boxes at the Agriculture Products Processing Center. The suggested method is to design and develop equipment such as a conveyer, robot, and bar code reader. In addition, a sorting plan, operational control, generation of control information, and software module that could monitor the inside of the Agriculture Products Processing Center is needed. After test-operating and evaluating the developed system, the existing manual work would be replaced with the automated robot system in order to enhance work efficiency and resolve safety issues.

Development of Lora Wireless Network Based Water Supply Control System for Bare Ground Agriculture (자가 충전 및 장거리 무선 네트워크를 지원하는 노지 농작물 관수 자동화 시스템 설계)

  • Joo, Jong-Yui;Oh, Jae-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1373-1378
    • /
    • 2018
  • In order to solve the problems such as reduction of agriculture population, aging and declining of grain self sufficiency rate, agriculture ICT convergence technology utilizing IoT technology is actively being developed. Agricultural ICT technology only concentrates on facility houses, and there is no automated control system in the field of cultivation. In this paper, we propose an irrigation control system that automatically controls the solenoid valves and water pumps in a large area with Lora wireless communication. The proposed system does not require a separate power source by using a small solar panel, and it is very convenient to install and operate supporting wireless auto setup by plug-and-play method. Therefore, it is expected that it will contribute to the reduction of labor force, quality of agricultural products, and productivity improvement.

Smart Farm Metabus game for Settlement Process of Returning Farmers (귀농인들의 정착 과정을 위한 스마트팜 메타버스 게임)

  • Ko-Eun, Lee;Yoon-seop, Kim;Yeong-Seong, Moon;Hyo-Taek, Lim;Sung-Jun, Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.93-100
    • /
    • 2023
  • In this paper, the purpose of this study is to melt the process of returning to farming through games and settle down in a stable manner to ensure that there are no more prospective young farmers who wish to return to farming but cannot proceed with their dreams due to various barriers of reality. The game was designed to develop in the order of fields, greenhouses, automation systems, and smart farms, and to grow the crops they want at the early level, and added a community system to highlight that rural areas are community life, not individualistic life. Support benefits or information provided by local governments or governments were inserted into the community system so that prospective farmers could naturally access the information.

Design of Smartfarm Environment Controller Using Fuzzy Control Method and Human Machine Interface for Livestock Building (퍼지 제어법과 HMI를 이용한 축사용 스마트팜 환경 제어기 설계)

  • Byeong-Ro Lee;Ju-Won Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.129-136
    • /
    • 2022
  • The most important part of the smart livestock building system is to maintain a breeding environment so that livestock can grow to high quality despite changes in the internal and external atmospheric environment. Especially, it is very important to maintain the temperature and humidity in the livestock building because various diseases occur during the summer and winter. To manage the environment suitable for livestock, a smartfarm system for livestock building is applied, but it is very expensive. In this study, we propose a hardware design and control method for low cost system based on HMI and fuzzy control. To evaluate the performance of the proposed system, we did a simulation experiment in the atmospheric conditions of summer and winter. As a result, it showed the performance of minimizing the temperature and humidity stress of livestock. And when applied to the livestock building, the proposed system showed stable control performance even in the change of the external atmospheric environment. Therefore, as with these results, if proposed system in this study is applied to the smart farm system, it will be effective in managing the environment of livestock building.

Effects of Light Quality and Lighting Type Using an LED Chamber System on Chrysanthemum Growth and Development Cultured In Vitro (LED Chamber System을 이용한 광질 및 광조사 방법 제어가 국화 배양소식물체의 생장에 미치는 영향)

  • Heo, Jeong-Wook;Lee, Yong-Beom;Chang, Yu-Seob;Lee, Jeong-Taek;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.374-380
    • /
    • 2010
  • This experiment was carried out to investigate the effect of light qualities and lighting types provided by LED Chamber System which designed by Rural Development Administration on growth and development of Chrysanthemum (Dendranthema grandiflorum L., cv. 'Cheonsu') plantlet cultured in vitro. The explants of single-node cuttings were exposed to monochromic or mixture radiation of blue, red, or green under continuous and intermittent lighting for 42 days. The intermittent lighting of 20 sec. on and off per minute significantly stimulated shoot elongation with lower number of internodes compared with continuous lighting treatments. However, continuous blue, red, or green light gave greater dry weight comparing the intermittent lighting, and the lowest weight was recorded at the continuous fluorescent lamp. Otherwise, the plantlet growth in dry weight or leaf area was inhibited by the green light controlled at 50 times intermittence but internode elongation was significantly increased. These results showed that the plantlets were successfully grown under the LED Chamber System controlled with different light qualities and lighting types. Quantitative growth of the plantlets was improved under the shorter photoperiod with a intermittent lighting cycle compared with continuous lighting using fluorescent lamps. It is concluded that the growth and development of in vitro plantlets such as single-node cuttings can be achieved by the controlling of light quality or lighting type during the photoperiod per day with a lower electric cost compared with conventional continuous lighting system.