• Title/Summary/Keyword: Fan-out Area

Search Result 52, Processing Time 0.033 seconds

Analysis and Performance Test for the Fan of a Wide Area Sprayer of Livestock Farm (축산 농가용 광역방제기 팬의 성능실험 및 분석)

  • Hong, J.T.;Min, B.R.;Kim, D.W.;Seo, K.W.;Kim, W.;Lee, S.K.;Kim, S.Y.;Lee, D.W.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • This research was carried out to test and analyse the capability of a fan for development of a sprayer in actual livestock farm. A fan was designed and made to be able to spray agricultural chemicals within 140mm in a maximum scattering range and 100m in an effective scattering range. Accordingly, its' flow rate was $3,600\;m^3/min$, and static pressure was 100 mmAq for a wide area sprayer to be sprayed widely and far. Fan performance, which was given $600\;m^3/min$ flow rate and 500 mmAq total pressure, was tested fur basic experiment. As the result, the axial power showed minimum error, which be designed to keep the fan performance. And power efficiency was the maximum. Sound level was 92.1dB that wasn't enough to environmental standard. If we take the sealed place into consideration, sound level is suitable for environmental standard.

  • PDF

Effects of Acoustic Resonance and Volute Geometry on Phase Resonance in a Centrifugal Fan

  • Tsujimoto, Yoshinobu;Tanaka, Hiroshi;Doerfler, Peter;Yonezawa, Koichi;Suzuki, Takayuki;Makikawa, Keisuke
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.75-86
    • /
    • 2013
  • The effects of acoustic resonance and volute geometry on phase resonance are studied theoretically and experimentally using a centrifugal fan. One dimensional theoretical model is developed taking account of the reflection from the discharge pipe end. It was found that the phase resonance occurs, even with the effects of acoustic resonance, when the rotational speed of rotor-stator interaction pattern agrees with the sound velocity. This was confirmed by experiments with and without a silencer at the discharge pipe exit. The pressure wave measurements showed that there are certain effects of the cross-sectional area change of the volute which is neglected in the one dimensional model. To clarify the effects of area change, experiments were carried out by using a ring volute with a constant area. It was demonstrated that the phase resonance occurs for both interaction modes travelling towards/away from the volute. The amplitude of travelling wave grows towards the volute exit for the modes rotating towards the volute exit, in the same direction as the impeller. However, a standing wave is developed in the volute for the modes rotating away from the volute exit in the opposite direction as the impeller, as a result of the interaction of a growing wave while travelling towards the tongue and a reflected wave away from the tongue.

A Study on the noise & vibration properities of Fan Filter Unit and evaluation of effect to Clean Room (Fan Filter Unit 소음ㆍ진동 특성과 청정실에 미치는 영향성 평가에 관한 연구)

  • 백재호;손성완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.778-784
    • /
    • 2002
  • FFU are used increasingly by the microeleceronics industry to provide clean recirculating air for the fabrication of integrated circuits and laminar flow air. There may be several hundred ffu in a large cleanroom, covering 100% of the ceiling area. Hence, there is of often knowledge in the inside and outside of the country the flu give rise to noise & vibration trouble to microelectronics industry. Noise & Vibration control for satisfication about noise & vibration criteria in TFT-LCD factory cleanroom be in need of exact noise & vibration data of accurence from utility & equipment that can be exert a bad influence upon cleanroom. In this pater, hence we found out noise and vibration properities of ffu by using experimental method. And, we performed noise & vibration analysis about noise it vibration level in cleanroom using semiempirical method for quantative approach about noise & vibration level in cleanroom.

  • PDF

A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel (수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구)

  • Choi, Sang-Gil;Cho, Jin-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

Study on Performance Improvement Air Cooled Condenser Considering Ambient Condition (대기 조건에 따른 공랭식 응축기 성능 저하 개선 연구)

  • Cha, Hun;Ryu, Gwang-Nyeon;Kim, Jung-Rae
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • Air cooled condenser for power plant is used at inland area of desert or mountainous area because condenser coolant like sea water is not necessary. However, the performance of air cooled condenser is influenced by ambient condition such as wind speed and air temperature. Therefore, various devices have been designed to improve the performance of air cooled condenser. In this study, the CFD analysis for air cooled condenser was carried out according to wind speed and wind screen configuration. As wind speed increased from 3m/s to 7m/s, the fan flow rate was reduced about 15.76% and the rise of inlet air temperature was 5.55 degree of Celsius. When the suitable wind screen is equipped, the fan flow rate went up about 5.18% and inlet air temperature dropped by 2.08 degree of Celsius in comparison with original case without wind screen at 7m/s wind speed.

The study on enhanced micro climate of the oyster mushroom cultivation house with multi-layered shelves by using CFD analysis (CFD 분석에 의한 느타리버섯 재배사 환경균일성 향상 연구)

  • Lee, Sung-Hyoun;Yu, Byeong-Kee;Lee, Chan-Jung;Lim, Yeong-Taek
    • Journal of Mushroom
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • The oyster mushroom cultivation house typically has multiple layers of growing shelves that cause the disturbance of air circulation inside the mushroom house. Due to this instability in the internal environment, growth distinction occurs according to the area of the growing shelves. It is known that minimal air circulation around the mushroom cap facilitates the metabolism of mushrooms and improves their quality. For the purpose of this study, a CFD analysis FLUENT R16 has been carried out to improve the internal environment uniformity of the oyster mushroom cultivation house. It is found that installing a section of the working passage towards the ceiling is to maintain the internal environment uniformity of the oyster mushroom cultivation house. When all the environment control equipment - including a unit cooler, an inlet fan, an outlet fan, an air circulation fan, and a humidifier - were operated simultaneously, the reported Root Mean Square (RMS) valuation the growing shelves were as follows: velocity 23.86%, temperature 6.08%, and humidity 2.72%. However, when only a unit cooler and an air circulation fan operated, improved RMS values on the growing shelves were reported as follows: velocity 23.54%, temperature 0.51%, and humidity 0.41%. Therefore, in order to maintain the internal environment uniformity of the mushroom cultivation house, it is essential to reduce the overall operating time of the inlet fan, outlet fan, and humidifier, while simultaneously appropriately manage the internal environment by using a unit cooler and an air circulation fan.

Environmental Survey to a Ventilation System on the Enclosed Farrowing-nursery Pig House in Winter (무창 분만ㆍ자돈사내에서 환기시스템별 혹한기 환경 조사)

  • 유용희;송준익;정종원;김태일;최희철;양창범;이영윤
    • Journal of Animal Environmental Science
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • This study was conducted to improve a ventilation system on the enclosed farrowing-nursery pig house in Korean swine facilities. This survey ventilation system types four major structures. The first structure has planer slot inlet, where air comes in, and these are placed outside the wall under the eave. Then the air from the pig house flows out through the chimney outlet operated by an exhaust fan(V1). The second structure has an air input through the perforated ceiling inlet, then the air from the pig house flows out through the chimney outlet operated by an exhaust fan(V2). Through the circular duct inlet placed inside the juncture of the entry wall, air also comes in(third structure). Then, air from the pig house flows out through the chimney outlet operated by an exhaust fan(V3), Similarly, air comes in through the circular duct inlet placed inside the juncture of the entry wall, but air from the pig house flows out through the side wall by an exhaust fan(V4). Temperature, relative humidity, air velocity and ammonia concentration(NH$_3$) were measured in the interior farrowing-nursery pig house during winter. The results were as follows; Interior temperature at the pig house was not remarkably different in all ventilation systems. The V4 system had low area air velocity, and this was better than other systems. It also had a lower ammonia concentration than other systems. V3 and V4 systems had stable airflow patterns, better than other systems. Therefore, it is suggested that the V3 and V4 ventilation system be applied in the enclosed farrowing-nursery pig house in winter.

  • PDF

The Concentration of TSP and Heavy Metals in the Indoor Air of Local PC Rooms (지방 일개도시 PC방에서의 실내공기중 TSP농도와 TSP내 중금속 농도)

  • Cha Hyun Su
    • Journal of Korean Public Health Nursing
    • /
    • v.16 no.1
    • /
    • pp.190-200
    • /
    • 2002
  • This study was carried out to investigate and analyze TSP of the PC rooms. The concentration of the total suspended particulate and heavy metals contained in the total suspended particulate of the 15 PC rooms located in one local city were measured. The statistical correlation coefficients between the total suspended particulate and factors of the indoor condition (number of fan or size of pc room, illumination), between the heavy metals and factors of the indoor condition were studied. The results are as follows: 1. The factors of the indoor condition of the 15 PC rooms are as follows. Average illumination was 24 luxes. Average number of computers installed were 37. Average number of the fans was 7. and the size of investigated PC rooms was $139.94m^2$. 2. The mean age of the subjects was 21.8 years old. they $(51.5\%)$ used the 15 pc rooms for fewer than 2 hours per one day. 3. The mean concentration of total suspended particulate (TSP) is lower in the evening ${139.085\;(2.462)\;{\mu}g/m^3}$ than the night ${166.216(2.609){\mu}g/m^3}$. 4. The mean concentration of total suspended particulate was industrial work area) residential area) commercial area. 5. The distribution of heavy metals were indicated as Zn>Cr>Pb>Cd in the indoor air at PC rooms. and the concentration rate of Zn was the highest among heavy metals. but this increase didn't show any relationship with many factors of indoor condition (number of fan or size of pc room, lighting) 6. The concentration of TSP & heavy metals didn't have any relationship between the factors of indoor environment (number of fans, size of pc room, lighting).

  • PDF

Using Acoustic Liner for Fan Noise Reduction in Modern Turbofan Engines

  • Azimi, Mohammadreza;Ommi, Fathollah;Alashti, Naghmeh Jamshidi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.97-101
    • /
    • 2014
  • With the increase in global air travel, aircraft noise has become a major public issue. In modern aircraft engines, only a small proportion of the air that passes through the whole engine actually goes through the core of the engine, the rest passes around it down the bypass duct. A successful method of reducing noise further, even in ultra-high bypass ratio engines, is to absorb the sound created within the engine. Acoustically absorbent material or acoustic liners have desirable acoustic attenuation properties and thus are commonly used to reduce noise in jet engines. The liners typically are placed upstream and downstream of the rotors (fans) to absorb sound before it propagates out of the inlet and exhaust ducts. Noise attenuation can be dramatically improved by increasing the area over which a noise reducing material is applied and by placing the material closer to the noise source. In this paper we will briefly discuss acoustic liner applications in modern turbofan engines.

Emission Characteristics of LP Gas Burner for the Variation of Combustion Conditions (연소조건 변화에 따른 LP가스버너의 배기특성)

  • 이병곤;오택흠
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • An experimental study was carried out to investigate the emission characteristics of LP gas burner for the Practical combustion conditions including fm voltage, inlet area, gas Pressure, emission resistance, duct length and height. The result shows that CO is almost remains constant for the emission fan voltage, but significantly increases with the reduction rate of air inlet, up to 3000ppm at 50% of reduction rate. Also, the variation of gas pressure has no effect to CO of gas boiler due to its governor which controls gas pressure secondly, but it gives an rapid increase of CO for the gas range. The emission resistance test shows that CO is suddenly increased with the reduction rate of emission duct above 70% and main burner is stopped at 90%. The reverse wind test shows that CO is suddenly increased with the air velocity above 7m/s and main burner is stopped at 9m/s. The more horizontal length of emission duct is long and the vertical height is low, CO is infinitesimally increased.

  • PDF