• 제목/요약/키워드: Fan Flow Rate

검색결과 310건 처리시간 0.024초

Numerical Analysis on the Effect of Parameters that Affect the Flow Rate through the Tunnel with Jet Fan Ventilation System

  • Kim, Sa-Ryang;Hur, Nahmkeon;Kim, Young-Il;Kim, Ki-Jung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.178-187
    • /
    • 2003
  • In this study, ventilation flow rate and pressure rise through a tunnel are simulated numerically using computational fluid dynamics (CFD) for various conditions such as roughness height of the surface of tunnel, swirl angle and hub/tip ratio of jet fan, and entrance and exit effects. By using a modified wall function, friction factor can be predicted with respect to the Moody chart within 10% of error for the circular pipe flow and 15% for the present tunnel. For more accurate design, the effect of the swirl angle and hub/tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan needs to be considered.

Behavior of Rotating Stall Cell in a High Specific-Speed Diagonal Flow Fan

  • Shiomi, Norimasa;Cai, W.X.;Muraoka, A.;Kaneko, K.;Setoguchi, T.
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1860-1868
    • /
    • 2001
  • An experimental investigation was carried out to clarify unsteady flow fields with rotating stall cell, especially behavior of stall cell, in a high specific-speed diagonal flow fan. As its specific-speed is vary high for a diagonal flow fan, its pressure-flow rate curve tends to indicate unstable characteristics caused by rotating stall similar to axial flow fan. Although for an axial flow fan many researchers have investigated such the flow field, for a diagonal flow fan tittle study has been done. In this study, velocity fields at rotor Inlet in a high specific-speed diagonal flow fan were measured by use of a single slant hot-wire probe. These data were processed by using the "Double Phase-Locked Averaging"(DPLA) technique, i. e. phases of both the rotor blade and the stall cell were taken into account. The behaviors of stall cell at rotor inlet were visualized for the meridional, tangential and radial velocity.

  • PDF

와류 저감을 통한 냉장고 냉기순환용 고성능/저소음 원심홴의 개발 (Development of High-performance/low-noise Centrifugal Fan Circulating Cold Air Inside a Household Refrigerator by Reduction of Vortex Flow)

  • 신동휘;유서윤;정철웅;김태훈;정지원
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.428-435
    • /
    • 2016
  • In this paper, high-performance and low-noise centrifugal fan used to circulate cold air inside a household refrigerator is developed by reducing the vortex flow observed near the tip of fan hub. First, the performance of the existing centrifugal fan is investigated through the experiment using a fan tester and the characteristics of detailed flow field obtained from the CFD simulation are closely examined. The strong vortex flow is observed in the vicinity of the tip of fan hub. Based on this result, new design is devised to reduce this vortex flow. As a result, it is numerically and experimentaly found that the volume flow rate of the new fan increases and the radiated noise decreases in comparison with the existing fan at the same rotation speed.

진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석 (System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner)

  • 박창환;박경현;장경식
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

허브 형상에 따른 정풍량 환기팬의 유동과 성능특성 (Flow Behavior and Performance Characteristics of Constant Air Volume Fan According to Different Hub Shape)

  • 이호호;최항철;정재구;이윤표;신유환;정진택
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.57-62
    • /
    • 2012
  • The constant air volume flow fan can maintain constant flow rate to the wide range of exit pressure. Therefore, the use of this fan is increasing recently for ventilation of high building. Brushless DC motor is adopted to this fan because that has advantages of compactness and performance. But this type of motor protrude from impeller hub side to fan inlet. The Impeller inlet flow is influenced by size of this obstacle called hub. In this paper, the influence of hub shape on the fan performance characteristics are experimentally and numerically analyzed. CFX 12.0 is used to perform the fan internal flow analysis and numerical results are compared with the experiments. Depending on hub shape, internal loss is generated and the performance and efficiency are reduced. The best performance is occurred around $h/b_1$ = 0.25. The results of this study will be contribute to initial design of constant air volume flow fan development.

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

유량에 따른 축류홴의 익단누설와류 및 후류 특성 (Flow Characteristics of Wake Flow with Relation to a Tip Leakage Vortex at Different Flow Rates in an Axial Flow Fan)

  • 김광용;장춘만
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.322-329
    • /
    • 2005
  • The flow characteristics in the blade passage and in the wake region of a low speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. The tip leakage vortex interfaces with blade pressure surface, and results in high velocity fluctuation near the pressure surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near stall condition, which results in large blockage compared to that at the design condition. Although the wake flow downstream of the rotor blade is clearly measured at all operating conditions, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is mainly observed at a higher flow condition than the design flow rate.

치수효과를 고려한 횡류홴의 작동특성연구 (A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan)

  • 김형섭;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제8권3호
    • /
    • pp.26-32
    • /
    • 2005
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fall has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control the size and position, is the important cause of performance decrease. In this study, experiments we carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spiral, which is the important factor having an effect on it.

수치적 방법을 이용한 저소음 얼터네이터 냉각팬의 개발 및 소음 특성 분석 (Development and Analysis on Noise Characteristics of Low Noise Cooling Fan for an Alternator by Using Numerical Method)

  • 김욱;전완호;현재진;임철구;이성하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.608-609
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and FlowNoise S/W are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF

수치기법을 이용한 저소음 얼터네이터 냉각팬의 DFSS 최적 설계 (DFSS OPTIMUM DESIGN OF LOW NOISE COOLING FAN FOR AN ALTERNATOR BY NUMERICAL METHOD)

  • 김욱;전완호;현재진;임철구;이성하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.233-238
    • /
    • 2008
  • An alternator which converts mechanical rotating energy into electric energy is an important component of a vehicle. It operates in broad range from 3000 RPM to 18000 RPM. So, sufficient flow rate and low noise are needed in such broad operating range for a cooling fan of this alternator. In current study, the cooling fan of an alternator is developed through DFSS process and numerical analysis. In order to calculate flow rate and noise level, SC/Tetra and Flow Noise are used respectively, for a new developed fan, compared with original model, numerical result shows 3 dBA reduction and measured value shows 4 dBA reduction.

  • PDF