Mass spectrometry (MS) is widely applied for high throughput proteomics analysis. When large-scale proteome analysis experiments are performed, it generates massive amount of data. To search these proteomics data against protein databases, fully automated database search algorithms, such as Mascot and SEQUEST are routinely employed. At present, it is critical to reduce false positives and false negatives during such analysis. In this review we have focused on aspects of automated protein identification using tandem mass spectrometry (MS/MS) spectra and validation of the protein identifications of two most common automated protein identification algorithms Mascot and SEQUEST.
Human Papillomavirus (HPV) infection is known as the main factor for cervical cancer which is a leading cause of cancer deaths in women worldwide. Because there are more than 100 types in HPV, it is critical to discriminate the HPVs related with cervical cancer from those not related with it. In this paper, the risk type of HPVs using their textual explanation. The important issue in this problem is to distinguish false negatives from false positives. That is, we must find high-risk HPVs as many as possible though we may miss some low-risk HPVs. For this purpose, the AdaCost, a cost-sensitive learner is adopted to consider different costs between training examples. The experimental results on the HPV sequence database show that the consideration of costs gives higher performance. The improvement in F-score is higher than that of the accuracy, which implies that the number of high-risk HPVs found is increased.
Whole genome sequencing (WGS)-based noninvasive prenatal test (NIPT) is the first method applied in the clinical setting out of various NIPT techniques. Several companies, such as Sequenom, BGI, and Illumina offer WGS-based NIPT, each with different technical and bioinformatic approaches. Sequenom, BGI, and Illumina utilize z-, t-, and L-scores, as well as normalized chromosome values, respectively, for trisomy detection. Their outstanding performance has been demonstrated in clinical studies of more than 100,000 pregnancies. The sensitivity and specificity for detection of trisomies 13, 18, and 21 were above 98%, as reported by all three companies. Unlike other techniques, WGS-based NIPT can detect other trisomies as well as clinically significant segmental duplications/deletions within a chromosome, which could expand the scope of NIPT. Incorrect results could be due to low fetal fraction, fetoplacental mosaicism, confined placental mosaicism or maternal copy number variation (CNV). Among those, maternal CNV is a significant contributor of false positive results and therefore genome wide scanning plays an important role in preventing the occurrence of false positives. In this article, the bioinformatic techniques and clinical performance of three major companies are comprehensively reviewed.
Event detection in wireless sensor networks is a key requirement in many applications. Acoustic sensors are one of the most frequently used sensors for event detection in sensor networks, but they are sensitive and difficult to handle because they vary greatly depending on the environment and target characteristics of the sensor field. In this paper, we propose a learning-based improvement of CFAR algorithm for increasing node-level event detection performance in acoustic sensor networks, and verify the effectiveness of the designed algorithm by comparing and evaluating the event detection performance with other algorithms. Our experimental results demonstrate the superiority of the proposed algorithm by increasing the detection accuracy by more than 45.16% by significantly reducing false positives by 7.97 times while slightly increasing the false negative compared to the existing algorithm.
Objective : Deep learning is a machine learning approach based on artificial neural network training, and object detection algorithm using deep learning is used as the most powerful tool in image analysis. We analyzed and evaluated the diagnostic performance of a deep learning algorithm to identify skull fractures in plain radiographic images and investigated its clinical applicability. Methods : A total of 2026 plain radiographic images of the skull (fracture, 991; normal, 1035) were obtained from 741 patients. The RetinaNet architecture was used as a deep learning model. Precision, recall, and average precision were measured to evaluate the deep learning algorithm's diagnostic performance. Results : In ResNet-152, the average precision for intersection over union (IOU) 0.1, 0.3, and 0.5, were 0.7240, 0.6698, and 0.3687, respectively. When the intersection over union (IOU) and confidence threshold were 0.1, the precision was 0.7292, and the recall was 0.7650. When the IOU threshold was 0.1, and the confidence threshold was 0.6, the true and false rates were 82.9% and 17.1%, respectively. There were significant differences in the true/false and false-positive/false-negative ratios between the anterior-posterior, towne, and both lateral views (p=0.032 and p=0.003). Objects detected in false positives had vascular grooves and suture lines. In false negatives, the detection performance of the diastatic fractures, fractures crossing the suture line, and fractures around the vascular grooves and orbit was poor. Conclusion : The object detection algorithm applied with deep learning is expected to be a valuable tool in diagnosing skull fractures.
Kim, Young-Jin;Ryu, Gil-Mi;Park, Chan;Kim, Kyu-Won;Oh, Berm-Seok;Kim, Young-Youl;Gu, Man-Bok
Genomics & Informatics
/
제5권4호
/
pp.143-151
/
2007
To understand the mechanism of transcriptional regulation, it is essential to detect promoters and regulatory elements. Various kinds of methods have been introduced to improve the prediction accuracy of regulatory elements. Since there are few experimentally validated regulatory elements, previous studies have used criteria based solely on the level of scores over background sequences. However, selecting the detection criteria for different prediction methods is not feasible. Here, we studied the calibration of thresholds to improve regulatory element prediction. We predicted a regulatory element using MATCH, which is a powerful tool for transcription factor binding site (TFBS) detection. To increase the prediction accuracy, we used a regulatory potential (RP) score measuring the similarity of patterns in alignments to those in known regulatory regions. Next, we calibrated the thresholds to find relevant scores, increasing the true positives while decreasing possible false positives. By applying various thresholds, we compared predicted regulatory elements with validated regulatory elements from the Open Regulatory Annotation (ORegAnno) database. The predicted regulators by the selected threshold were validated through enrichment analysis of muscle-specific gene sets from the Tissue-Specific Transcripts and Genes (T-STAG) database. We found 14 known muscle-specific regulators with a less than a 5% false discovery rate (FDR) in a single TFBS analysis, as well as known transcription factor combinations in our combinatorial TFBS analysis.
Background MicroRNAs (miRNAs) are a class of noncoding RNAs found in various organisms such as plants and mammals. However, most of the mRNAs regulated by miRNAs are unknown. Furthermore, miRNA targets in genomes cannot be identified by standard sequence comparison since their complementarity to the target sequence is imperfect in general. In this paper, we propose a kernel-based method for the efficient prediction of miRNA targets. To help in distinguishing the false positives from potentially valid targets, we elucidate the features common in experimentally confirmed targets. Results The performance of our prediction method was evaluated by five-fold cross-validation. Our method showed 0.64 and 0.98 in sensitivity and in specificity, respectively. Also, the proposed method reduced the number of false positives by half compared with TargetScan. We investigated the effect of feature sets on the classification of miRNA targets. Finally, we predicted miRNA targets for several miRNAs in the Caenorhabditis elegans (C. elegans) 3' untranslated region (3' UTR) database. Condusions The targets predicted by the suggested method will help in validating more miRNA targets and ultimately in revealing the role of small RNAs in the regulation of genomes. Our algorithm for miRNA target site detection will be able to be improved by additional experimentalknowledge. Also, the increase of the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection.
Babesia bovis rap-1 and B equi ema-1 intergenic(IG) nucleotides were analyzed and compared for identifying putative promoter sites using computer programs. The reason to initiate this research was to determine if IG nucleotides of Babesia genes that are predicted to be involved in erythrocyte invasion have functions regulating gene transcription and translation, which can be applied to functional gene knockout. Four IG sequences used included BbIG5(B bovis rap-1 5' IG), BblG3(B bovis rap-1 3' IG), BeIG5(B equi ema-1 5' IG) and BeIG3(B equi ema-1 3' IG). BbIG5 contained a putative promoter at nucleotide 197-246 with a predicted TATA-box and a transcription start site. BbIG3 had a putative promoter at nucleotide 270-320 with two predicted TATA-boxes and a transcription start site. BeIG3 had a putative promoter at nucleotide 155-205 with a predicted TATA-box and a transcription start site. Putative promoter sites in these three sequences mentioned above were identified with score cutoff 0.8, which means detection of about 40% recognized promoters with 0.1-0.4% false positives. In contrast, BeIG5 had a putative promoter at nucleotide 163-213 with score cutoff 0.8, but neither TATA-box nor transcription start site were recognized. However, BeIG5 had a putative promoter at nucleotide 388-438 with a predicted TATA-box and a transcription start site when score cutoff was decreased to 0.18, which means detection of about 70% recognized promoters with 2.2-5.3% false positives. These sequences with putative promoters can be tested if they have functions regulating gene transcription and translation.
본 논문은 딥러닝 알고리즘을 기반으로 하여 시각장애인을 위한 표지판을 검출하고 인식하는 시스템을 제안한다. 제안된 시스템은 크게 표지판 검출 단계와 표지판 인식 단계로 나눠지는데 표지판 검출 단계에서는 영상에서 응집 채널 특징을 추출한 뒤 아다부스트 분류기를 적용하여 표지판 관심영역을 검출하였고, 표지판 인식 단계에서는 검출한 표지판 관심영역들에 합성곱 신경망을 적용하여 어떤 표지판인지 인식하였다. 본 논문에서는 미검출된 표지판의 개수가 최대한 감소하도록 아다부스트 분류기를 설계하였고, 딥러닝 알고리즘을 사용하여 인식 정확도를 높임으로써 검출 단계에서 발생한 양성 오류들을 제거시켰다. 실험 결과, 제안된 방법의 양성 오류 개수가 다른 방법들의 양성 오류 개수보다 효과적으로 감소했음을 확인하였다.
지능형 선별 관제 시스템의 잦은 오탐지로 인해 관제 요원들의 업무 능률 및 시장 신뢰도 저하 문제가 꾸준히 보고되고 있다. 오탐지 문제 개선을 위해 새 AI 모델을 개발하거나 교체하는 것은 기회비용이 크므로, 훈련 데이터 세트 품질을 향상하여 문제를 개선하는 것이 현실적이다. 그러나 소규모 조직은 데이터 세트 수집 및 정제 역량이 부족한 실정이다. 이에 본 논문에서는 사람 자세 추정 모델을 중심으로 엣지 디바이스와 카메라 센서 퓨전을 활용한 사람 자세 데이터 자동 수집 시스템을 제안한다. 이 시스템은 네트워크 말단에서 현장 데이터를 직접 수집하고 레이블링하는 과정을 실시간으로 처리하도록 만들어, 중앙으로 집중되는 연산 부하를 분산시킨다. 또한 현장 데이터를 직접 레이블링하므로 새로운 훈련 데이터 구축에 도움을 준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.