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Abstract

Background

MicroRNAs (miRNAs) are a class of noncoding RNAs
found in various organisms such as plants and mammals.
However, most of the mRNAs regulated by miRNAs are
unknown. Furthermore, miRNA targets in genomes
cannot be identified by standard sequence comparison
since their complementarity to the target sequence is
imperfect in general. In this paper, we propose a kernel-based
method for the efficient prediction of miRNA targets. To
help in distinguishing the false positives from potentially
valid targets, we elucidate the features common in
experimentally confirmed targets.

Results

The performance of our prediction method was
evaluated by five-fold cross-validation. Our method
showed 0.64 and 0.98 in sensitivity and in specificity,
respectively. Also, the proposed method reduced the
number of false positives by half compared with
TargetScan. We investigated the effect of feature sets on
the classification of miRNA targets. Finally, we predicted
miRNA targets for several miRNAs in the Caenorhabditis
elegans (C. elegans) 3' untranslated region (3' UTR)
database.

Conclusions

The targets predicted by the suggested method will help
in validating more miRNA targets and ultimately in
revealing the role of small RNAs in the regulation of
genomes. Our algorithm for miRNA target site detection
will be able to be improved by additional experimental-
knowledge. Also, the increase of the number of confirmed
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targets is expected to reveal general structural features
that can be used to improve their detection.

Introduction

MicroRNAs {(miRNAs) are endogenous ~22 nt RNAs that
act as post-transcriptional regulators in animals and
plants by binding to the mRNAs. They induce their
cleavages or block their translation into proteins (Bartel,
2004). The first members of the miRNAs, lin-4 and let-7,
were discovered in C. elegans, and they are components
of the gene regulatory network that controls the timing of
C. elegans/|arval development (Lee et al., 1993; Wightman
etal., 1993; Ha et al., 1996; Moss et al., 1997; Seggerson
et al., 2002; Abrahante et al., 2003; Lin et al., 2003;
Reinhart et al., 2000). Recently, it was reported that
miRNAs are implicated in control of cell proliferation
(Brennecke et al., 2003), cell death for fat metabolism in
fies (Xu et al, 2008), control of leaf and flower
development in plants (Aukeman et al., 2003; Chen,
2004; Emery et al., 2003; Palatnik et al., 2003), and
hematopoietic lineage differentiation (Chen et al., 2004),
though no targets were confirmed in these studies.
These suggest the a broad range of possible functions
for miRNAs. The overall importance of miRNAs has
been further established by the notion that many
miRNAs appear to have tissue-specific or developmental
stage-specific expression patterns as well as their
evolutionary conservation, which is very strong within
mammals and often extends to invertebrate homologs
(Lagos-Quintana et al., 2001; Lau et al., 2001; Lee et al.,
2001; Lai, 2003; Lim et al., 2003a; Lim et al., 2003b;
Pasquinelli et al, 2000; Aravin et al, 2001;
Lagos-Quintana et al., 2002; Lagos-Quintana ef al, 2003;
Ambros et al., 2003; Dostie et al., 2003; Houbaviy et al.,
2003; Krichevsky et al., 2003).

However, although several functions of miRNA are
uncovered, the factors and the mechanisms related to
function of miRNAs are still unknown. The functional
annotation of miRNAs is difficult because the size of
miRNAs is small and the experiments for target
prediction are not efficient. Therefore, a computational
method to identify the target genes that are regulated by
miRNAs would greatly help the study of miRNA function
in animals (Ambros, 2001).

Targets for plant miRNAs have been identified on a
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Fig. 1. Feature selection for learning.

genome-wide scale by searches which require a high
degree of sequence complementarity (Rhoades et al.,
2003; Tang et al., 2003). However, most animal miRNAs
are thought to recognize their mRNA 3' UTR via partial
complementarity (Lee ef al.,, 1993; Wightman et al., 1993;
Moss et al., 1997; Reinhart et al., 2000; Zeng et al., 2002;
Doench et al., 2003). Because of this partial complementarity,
simple homology-based searches have failed to uncover
targets for miRNAs (Ambros ef al., 2003; Bartel and Bartel,
2003). Recently, carefully designed computational approaches
have been used to predict mRNA targets for Drosophila
(Stark et al., 2003; Enright et al., 2003) and mammalian
miRNAs (Lewis et al., 2003).

The methods used by Lewis et al. (2003) and Stark et
al. (2003) incorporated conservation of the mRNA target
site in the related organisms to separate signal from
noise. However, the methods the have high false
positive rate because they rely on inferences from a free
energy of the miRNA/target duplex folding.

We used the kernel method to classify the miRNA
targets, which is popular in modern statistical branch,
particularly in probability density estimation and regression
function approximation. In this paper, we propose an
efficient kernel-based method that predicts C. efegans
miRNA targets and present computational evidences
that the most important factor to determine miRNA targets
is the 5' region of miRNA.

Methods

Feature selection

Experimentally validated miRNA/target duplexes contain
mismatches, gaps, and loops at different positions. Such
structures of the duplexes make it difficult to identify
targets within whole-genome or transcriptome databases,
since standard alignment methods produce many false
positives with such short variable sequences. Furthermore,
the small number of validated examples makes it difficult

the correct identification of miRNA targets by traditional
classifiers.

In this paper, we analyzed the various characteristics
of miRNA/target duplexes to reduce the false positive
rate and classified the features into four major categories.
Fig. 1 presents the four main characteristics of the
miRNA/target duplexes. First, we used the structure
information of miRNA/target duplexes. Even though the
miRNA sequence has diverged, the secondary structure
in confirmed miRNA/target pairs might be conserved.
Therefore, we extracted the structural features based on
the characteristic patterns of the secondary structure.
Then, we calculated the distances of RNA secondary
structures using the RNAdistance software (Hofacker ef
al., 1994) and compared the similarity of secondary
structure of miRNA/target duplex using a Markov Chain
model. Also, we counted the number of match and
mismatch sites in the miRNA/target duplexes.

Second, we used the features of the miRNA 5' region.
The ability of a miRNA to translationally repress a target
mRNA is largely dictated by the free energy of binding of
the first eight nucleotides in the 5' region of the miRNA
(Doench et al., 2004). Moreover, the 5' ends of related
miRNAs tend to be better conserved than the 3' ends
(Lim et al., 2003; Mallory et al., 2004), further supporting
the hypothesis that these segments are most crucial for
miRNA target recognition. Therefore, we used the
structure and the free energy data extracted from the
miRNA 5' region/target duplexes.

Third, we used the free energy of miRNA/target
duplexes formation. The pairing of the miRNA 5' region
to the mRNA is sufficient to cause repression, and the
free energy value of this interaction is an important
determinant of activity. The 3' region of the miRNA is less
critical, but can modulate activity in certain circumstances
(Doench et al., 2004). Therefore, we calculated the free
energy of three different parts, the free energy of miRNA/
mRNA duplex, miRNA 5' region/mRNA duplex and miRNA
3' region/mRNA duplex.



|dentification of Caenorhabditis elegans MicroRNA Targets Using a Kermnel Method 17

Table 1. The features for SVM classifier

(1) The number of matches at the 8 nt of miRNA 5' region

(2) MiRNA 5' regionymRNA duplex free energy

(3) MIRNA/mRNA duplex free energy

(4) The number of G/U wobble pairs at the 8 nt of miRNA 5' region

(5) The number of mismatch of mIRNA/MRNA duplex

(6) The number of match of mIRNA/MRNA duplex

(7) MIRNA 3' region/mRNA duplex free energy

{8) The distance of mMIRNA/mRNA duplex secondary structures
using the RNAdistance program

(9) The similarity of secondary structures of MIRNA/MRNA duplex
using a Markov chain model

(10) The similarity of secondary structures of miRNA 5' region

/mRNA duplex using a Markov chain model

Lastly, we used the G:U wobble pairing feature
because G:U wobbie pairing is highly detrimental to
miRNA function despite its favorable contribution to
RNA:RNA duplexes (Doench et al., 2004). Table 1
presents all features described above.

Secondary structure prediction of RNA/RNA
duplexes

Mfold (Zuker, 2003) is a program package for the RNA
secondary structure prediction using nearest neighbor
thermodynamic rules. We searched for the most stable
binding site with RNA sequences from 3'UTR database
using MFold. We calculated the free energy, the number
of G:U wobble pairs and the number of mismatch and
match through this program.

Distance of RNA secondary structure

We used the RNAdistance software of the Vienna RNA
package (Hofacker et al.,1994) to calculate distances
between the analysed RNA secondary structures.
RNAdistance accepts structures in bracket format,
where matching brackets symbolize base pairs and
unpaired bases are represented by a dot '.', or coarse
grained representations where hairpins, interior loops,
bulges, multi loops, stacks and external bases. We
calculated the distance by

37 RNAdistance (str;, si7 e, )
score = 1M

7lp

where n, is the number of positive training data, str,,., IS
a query structure, and st¢r; is a structure of positive
training data. (see the eighth feature in Table 1)

Comparison of RNA secondary using a Markov
Chain probability

Markov Chain is a random process which has the

pair
A/U C/G G/U U/A
G/C U/G

mispair
A/C A/G A/A C/A
C/U C/C U/C U/
G/A G/G

deletion
-/A -/U -/C -/G

Fig. 2. Definition of States for a Markov Chain

property that the next state is conditionally independent
of the past given the current state. 1t is useful for
biological structure analysis because of their ability to
incorporate biological information in their structure. We
calculated the Markov Chain probability according to the
frequency of states that are givenin Fig. 2. The structural
probability was calculated by

Seore(wy) = IOg(f(xi‘;(ij §Con)j @

where f(z,;)is the structural probability for position i
and j, s(con) is a low-valued constant to prevent log
going to zero and p (z;;) is the background probability.
We constructed the Markov Chain as equation (3) and
(4) when sand tis a given state.

g = Pllz; = D)l(@y = s)] €
L
P(I> = a()z‘];!:az,mﬁl (4)

We used the Markov Chain probability to compare a
RNA secondary structure of miRNA/MRNA duplex. (see
the ninth and tenth features in Table 1)

Kernel method for target identification

We used a support vector machine (SVM) to classify
miRNA targets from mRNA 3' UTR database. This
method has attracted a lot of attention by its successful
application in pattern recognition (Scholkopf et al,
1999). The kemnel trick used in SVM is applicable not
only for classification but also for other linear techniques
(Vapnik, 1998). SVM is a method of obtaining the optimal
boundary of two sets in a vector space independently on
probabilistic distributions of training vectors in the sets.
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Table 2. The miRNA target prediction for /in-4in the C.elegans
3'UTR database

Genes products agﬁ%ssgn m'i’\éA 5 tXtGal
lin-41A LIN-41A AC: CC085391 -76  -196
lin-28 LIN-28 AC: CC013576 -115 -186
lin-14 LIN-14A AC: CC013457 -115 -175

nhr-17 nuclear receptor NHR-11 AC: CC073419 -11.5 -16.5
. hbl-1 hunchback-related protein AC: CC073457  -7.6 125,

These predicted miRNA targets contain all known lin-4 targets: lin-41,
lin-14, hbl and lin-28. This table was sorted by total free energy.

Its fundamental idea is locating the boundary that is most
distant from the vectors nearest to the boundary in both
of the sets. Let = be a vector in a vector space. A
boundary hyperplane is expressed in the form of
flz)=w'z+b where W is a weight coefficient vector
and b is a bias term. The distance between a training
vector z; and the boundary, called margin, is expressed
and reduced as maximization of 1/ w 2. Consequently,
the optimization is formalized as

minimizeg: w 2 (5)

subjecttoy; (w - 2z, —b) = 1,i=1,..,n.

This conditional optimization can achieved by Largrange’s
method of indeterminate coefficient.

o=

n
max
dia—
a =

subjecttoa; > 0,i=1,..,n, 317, a9, =0

Z laiajyiyjk (z;, %) (6)
,]=

where k(z;,z;) is a kernel function. If the sets are not
linearly separable, the slack variable ¢; is allowed to exist
in a limited region in the erroneous side along the
boundary. Also, in this paper, we used the polynomial
kermnel KA(z,z') = (z"2'+1)?and sequential minimal
optimization (SMO) algorithm (Keerthi et al., 2001; Platt
et al., 1999) to learn our SVM. The SMO that can be
viewed as the most extreme case of decomposition
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Fig. 3. The program process for target identification

methods is the most popular optimization algorithms for
SVM. It allows for fast convergence with small memory
requirements even on large problem.

The learning methods used in this study were obtained
from the WEKA machine learning package. We used the
SMO algorithm with the complexity parameter C=4 and
the polynomial kernel exponent = 5. All other parameters
were default values.

Results

The framework and implementation of our method

The overall process of our method is described in Fig.3.
We extracted structural information, free energy of
miRNA/target site interaction and 8 nucleotides (nt)
information of mMiRNA 5' end as input data from negative
and positive datasets. Then, input data was classified by
the kernel method implemented by SVM. The computational
experiments in this study were performed by the WEKA
machine learing package (Witten and Frank, 1999)
(http://www.cs.waikato.ac.nz/~ml/weka/).

Datasets

The training data for the SVM classifier is a set of RNA/RNA
pairs divided into positive and negative samples. The
positive training set consists of 39 experimentally defined
miRNA/target pairs (Slack et al., 2000; Lin et al., 2003;
Banerjee et al., 2002; Poy et al., 2004; Stark et al, 2003).
The positive samples include seven pairs of /in-14/ cel-let-7,
three pairs of lin-14/ cel-lin-4, one pair of lin-28/cel-lin-4,
one pair of lin-28/cel-let-7, one pair of lin-41/cel-lin-4,
one pair of lin-41/cel-let-7, five pairs of daf-12/cel-let-7,
one pair of hbl/cel-lin-4, ten pairs of hbl/cel-let-7, four
pairs of hid/dme-bantam, one pair of HLHm3/dme-miR-7,
one of hiary/dme-miR-7, one pair of rpr/dme-miR-2, one
pair of grim/dme-miR-2 and one pair of Mtprn/mir-375.
The negative training set consists of 1022 random
sequence/target pairs. We searched for the high-affinity
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Fig. 4. Structures not found from miRNA/target pairs.

Shown are the RNA/RNA duplex structures as predicted by MFOLD.
All sequence pairs containing additional branch structures were
removed from negative data.
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Table 3. The miRNA target prediction for /et-7in the C.elegans 3'UTR database

Genes products accession number  miRNA 5'AG  total AG
lin41A LIN-41A AC: CC085391 -9.8 -24.2
daf-12 DAF-12 A2 AC: CC073740 -9.8 -234
lin-14 LIN-14A AC: CC013457 -9.6 -23
hbl-1 hunchback-related protein AC: CC073457 -8.6 -22.2
lin-28 LIN-28 AC: CC013576 -8.6 -20.2
unc-129 UNC-129 AC: CC054258 98 -20
CePgM96 paraquat-inducible protein AC: CC013365 -6.9 -19.8
- nuclear receptor NHR-43 AC: CC125308 -7.8 -19.5
skr-21 SKR-21 AC: CC181290 -9.6 -18
Mio MiIx interactor AC: CC125253 9.8 -17.2
ces-2 CES-2 AC: CC013549 -9.6 -16.2
- - AC: CC013431 -9.8 -14.8
unc-16 UNC-16 AC: CC181137 -6.7 -14.6
wrk-1 immunoglobulin domain-containing protein WRK-1C AC: CC181358 -9.8 -14.5
pip-1 PIP-1 AC: CC228823 -8.9 -14
darf-4 BMP receptor AC: CC013410 -8 -13.9
dar-16 DAF-16 AC: CC046572 -8.6 -13.7
- histone H1.Q AC: CC085543 -9.6 -13.7
unc-2 High voltage activated calcium channel alpha-1 AC: CC230280 -7 -12.2
- histone H1.1 AC: CC012659 9.8 -11.6
- sodium-calcium exchanger AC: CC049470 -5.2 -10.1
unc-115 putative actin-binding protein UNC-115 AC: CC060593 -6.9 -9.7

The predicted miRNA targets contain all known let-7targets: lin-41, daf-21, lin-14, hbl and lin-28. Tables are sorted in ascending order by total free energy.

binding sites with random sequences from C. elegans
3'UTR database (ftp://bighost.ba.itb.cnr.it/pub/Embnet/
Database/UTR/data/) to make the negative training set.
The random sequences similar in length to miRNAs
(approximately 18-22 nt) were produced by site-independent
sampling. We extracted the random sequence/target
pairs that have more than six perfect Watson-Crick pairs
of 8 nt from the mRNA 5 end, and that have a
thermodynamicaly stable free energy less then -8.5
kcal/mole. Also all sequence pairs with structures like
Fig.4, consisting of additional branch structures, were
removed from the negative data since those structures
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Fig. 5. The performance comparison with TargetScan

The grey box indicates the efficiency by SVM and the white box
indicates the efficiency by TargetScan. The sensitivity and specificity
obtained by SVM are similar or better than TargetScan program.

were not found in the positive datasets.

Performance of the kemel method

The objective of this study is to construct classifiers that
can correctly classify the miRNA target genes from the
3'UTR database. The performance of our classification
method was evaluated by five-fold cross-validation. That
is, the whole data set was partitioned into five subsets.
The four of the subsets were used as a training test, and
the rest were used as a test set, and this process was
repeated five times. Table 2 shows the sensitivity and the
specificity of the five-fold cross-validation in classifying
the miRNA target genes using the kernel machine. The
sensitivity was 0.64 and the specificity was 0.98.

Also, we compared the performance to TargetScan
(Lewis et al., 2003) with 32 of 39 training data and 1751
random negative data. TargetScan combines thermodynamics-
based modelling of RNA/RNA duplex interactions with
comparative sequence analysis to predict miRNA targets
conserved across multiple genomes. Fig.5 shows that

Table 4. The performance of 5 fold cross-validation for training
data set

TP FN FP TN  Sensitivity Specificity PPV

25 14 23 999 0.64 0.98 0.52
The performance is presented in terms of three statistical measures:
sensitivity = TP/(TP+FN); specificity = TN/(TN+FP) and PPV =
TP/(TP+ FP) where TP is the number of true positives, TN is the
number of true negative, FP is the number of false positives and FN is
the number of false negatives.
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Table 5. The miRNA target predictions for miR-228, miR-229,
miR-230 and miR-2317 in the C.elegans 3'UTR database

accession miRNA5' total
Genes products number AG AG
cel-miR-228
g putative RNA-binding .
unc-75 protein AC: CC266578 -89 -256
vab-2 VAB-2 AC: CC085460 -88 -16.5
vab-10 VAB-10A protein AC:CC231603 -75 -16.2
lin-9 LIN-9L AC:CC103462 -75 -16.1
perss  transmembrane protein - AC: CC013339 -89  -157
poly ADP-ribose .
pme-1 metabolism enzyme-1 AC: CC181762 -9.1  -151
: small zinc finger-like .
tim9b protein AC: CC084885 -89 -134
ehs-1 EHS-1 AC:CC126116 -75 -128
methuselah-like protein .
TH- AC:CC279142 69 -116
cel-miR-229
- Na/Ca K-exchanger = AC: CC054777 6.8 -13.2
cel-miR-230
mab-21 mab-21 protein AC: CC103635 -55 -136
cel-miR-231
kinesin like protein .
kip-12 KLP-12 AC:CC121004 -7.7 -10.8
mom-1 MOM-1 AC: CC012616 -7 -21.6
let-413 LET-413 protein AC: CC103637 -85 -127
let-23 tyrosine kinase AC:CC013452 -85 -109

the sensitivity and the specificity of our method using
SVM are similar to or better than TargetScan program.
However, the more important thing is that the number of
false positives is much lower than TargetScan, that is, 35
false positives by our method compared with 77 in
TargetScan. This shows that our method is more efficient
and correct than TargetScan.

MicroRNA target prediction in C. elegans
We applied our method to /et-7 and /in-4 miRNA genes,
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Fig. 6. Feature’s influence on performance.

The x-axis means the feature number of Table 1. Each SVM classifier
is trained without the feature of the corresponding number. The feature
with lower sensitivity is assumed to be a more important factor in the
identification of miIRNA target.

whose targets are known (Wightman et al., 1993; Ha et
al., 1996; Moss et al., 1997; Olsen et al., 1999; Seggerson
et al., 2002; Slack et al., 2000; Abrahante et al., 2003; Lin
et al., 2003; Banerjee et al., 2002) (Tables 3 and 4).
These predicted miRNA targets contain all the known
let-7 targets: lin-41, daf-21, lin-14, hbl and lin-28. This
shows that most miRNA/target pairs can possibly be
detected by an SVM classifier with low specificity in
genome-wide searches. Table 5 presents the miRNA
targets of miR-228, miR-229, miR-230 and miR-231.

Analysis of Feature Set

In this section, we investigate the effect of feature set on
the performance of miRNA target classifier. We excluded
a feature from the entire feature set one by one and
examined how much each feature contributes to the
performance of the classifier. Fig. 6 presents each
feature’s influence on the performance. The feature
having lower sensitivity will be a more important factor to
decide miRNA targets. The top-three features having the
lowest sensitivity were the number of G/U wobble pairs
at the 8 nt of miRNA 5' region (feature (4)), the number of
matches at the 8 nt of miRNA 5' region (feature (1)), and
the similarity of secondary structure of miRNA 5' region
/mRNA duplex using a Markov chain model (feature
(10)). All of them are related to the miRNA 5' region.
Every experiment has a similar specificity (97% ~ 98%).
Moreover, Fig. 7 shows that features the miRNA 5' region
are the most important information to decide whether
miRNA target or not, further supporting the hypothesis
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Fig. 7. Feature’s influence on performance. (1) SVM classifier
trained without information about free energy. (2) SVM
classifier trained without RNA structure information. (3) SVM
classifier trained without information of miRNA 5' region. This
shows that features about miRNA 5' region are the most
important information to decide whether miRNA target or not.
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that the miBNA 5' region is most critical for miRNA target
recognition (Doench et al., 2004).

Discussion

The application of a computational approach to the
prediction of miRNA targets is often hindered by the
small size of miRNA sequences. The prediction of
miRNA targets is more complicated due to the tendency
of imperfectness in MIRNA/mRNA pairings in animals.
We presented a kernel-based classification method to
overcome these problems and tried to identify potential
miRNA targets with an RNA-folding program that
evaluates the structural and thermodynamic plausibility
of the predicted pairs and distinguishes the real from the
random matches. Kernel-based statistical learning
methods have a number of advantages for the analysis
of not only vectorial and matrix data which are common
in classic statistical analysis but also more exotic data
types such as string, trees and graphs. The ability to
handie such data is clearly essential in the biological
domain. The kemnel-based method provides significant
opportunities for the incorporation of more specific
biological knowledge and unlabelled data.

We demonstrated that the SVM classifier for the
computational identification of miRNA target sites can
detect miRNA target sites with high specificity. The result
of this method will be able to provide better understanding
of how miRNAs bind their targets. To help distinguish the
false positives from potentially valid targets, we identify
the features shared by valid targets. Also, the method
can be applied to other species as well, because many of
these miRNAs are phylogenetically conserved, suggesting
strong evolutionary pressure. The functional target sites
are conserved in homologous genes from related species
(Moss and Tang, 2003), so we can improve the performance
through the analysis of the orthologous 3'UTRs. Efforts to
find more animal miRNA targets will be greatly helpful
because of the deeper understanding of structural and
biochemical nature of miRNA/MRNA pairing. The targets
predicted by the proposed method will help in validating
more miRNA targets and ultimately in revealing the role
of these small RNAs in the regulation of the genome.
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