• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.028 seconds

ENHANCEMENT OF FACE DETECTION USING SPATIAL CONTEXT INFORMATION

  • Min, Hyun-Seok;Lee, Young-Bok;Lee, Si-Hyoung;Ro, Yong-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.108-113
    • /
    • 2009
  • Significant attention has recently been drawn to digital home photo albums that use face detection technology. The tendency can be found in home photo albums that people prefer to allocate concerned objects in the center of the image rather than the boundary when they take a picture. To improve detection performance and speed that are important factors of face detection task, this paper proposes a face detection method that takes spatial context information into consideration. Experiments were performed to verify the usefulness of the proposed method and results indicate that the proposed face detection method can efficiently reduce the false positive rate as well as the runtime of face detection.

  • PDF

Temporal and spatial outlier detection in wireless sensor networks

  • Nguyen, Hoc Thai;Thai, Nguyen Huu
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.437-451
    • /
    • 2019
  • Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.

An Intrusion Detection Method Based on Changes of Antibody Concentration in Immune Response

  • Zhang, Ruirui;Xiao, Xin
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.137-150
    • /
    • 2019
  • Although the research of immune-based anomaly detection technology has made some progress, there are still some defects which have not been solved, such as the loophole problem which leads to low detection rate and high false alarm rate, the exponential relationship between training cost of mature detectors and size of self-antigens. This paper proposed an intrusion detection method based on changes of antibody concentration in immune response to improve and solve existing problems of immune based anomaly detection technology. The method introduces blood relative and blood family to classify antibodies and antigens and simulate correlations between antibodies and antigens. Then, the method establishes dynamic evolution models of antigens and antibodies in intrusion detection. In addition, the method determines concentration changes of antibodies in the immune system drawing the experience of cloud model, and divides the risk levels to guide immune responses. Experimental results show that the method has better detection performance and adaptability than traditional methods.

Effects of Adjacent Channel Leakage on an Energy Detection Based Spectrum Sensing (인접 채널 누설이 에너지 검파 기반 스펙트럼 센싱에 미치는 영향)

  • Lim, Chang Heon;Kim, Hyung Jung;Kim, Chang Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.542-547
    • /
    • 2014
  • When a primary user transmits over some frequency band assigned to it, most of its transmission power tends to be concentrated in the band but a small portion of it spreads into the adjacent bands. Thus the false alarm probability for the adjacent bands can be higher than expected, even though no primary users are active in the bands. A previous work evaluated the effects of the adjacent channel leakage on the performance of an energy detection based spectrum sensing but it did not take into account the fading phenomenon. In this paper, we analyze the effects of the adjacent channel leakage on an energy detection based spectrum sensing scheme in terms of detection probability and false alarm probability in a fading environment.

A Design and Implementation of Anomaly Detection Model based the Web Traffic Trend Analysis (웹 트래픽 추이 분석 기반 비정상행위 탐지 모델의 설계 및 구현)

  • Jang, Sung-Min;Park, Soon-Dong
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.715-724
    • /
    • 2005
  • Recently many important systems that used to be operated in a closed environment are now providing web services and these kinds of web-based services are often an easy and common target of attacks. In addition, the great variety of web content and applications cause the development of new various intrusion technologies, while the misuse-based intrusion detection technology cannot keep the peace with the attacks and it seems to lack the capability to deal with such various new security threats, As a result it is necessary to research and develop new types of detection technologies that can detect newly developed attacks and intrusions as well as to be able to deal with previous types of exploits. In this paper, a HTTP traffic model is tested for its anomaly by using a HTTP request traffic pattern analysis and the field information analysis of the HTTP packet. Consequently, the HTTP traffic models by applying anomaly tests is designed and established.

  • PDF

A Method for Quantifying the Risk of Network Port Scan (네트워크 포트스캔의 위험에 대한 정량화 방법)

  • Park, Seongchul;Kim, Juntae
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.91-102
    • /
    • 2012
  • Network port scan attack is the method for finding ports opening in a local network. Most existing IDSs(intrusion detection system) record the number of packets sent to a system per unit time. If port scan count from a source IP address is higher than certain threshold, it is regarded as a port scan attack. The degree of risk about source IP address performing network port scan attack depends on attack count recorded by IDS. However, the measurement of risk based on the attack count may reduce port scan detection rates due to the increased false negative for slow port scan. This paper proposes a method of summarizing 4 types of information to differentiate network port scan attack more precisely and comprehensively. To integrate the riskiness, we present a risk index that quantifies the risk of port scan attack by using PCA. The proposed detection method using risk index shows superior performance than Snort for the detection of network port scan.

Implementation of Multiple Sensor Data Fusion Algorithm for Fire Detection System

  • Park, Jung Kyu;Nam, Kihun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.7
    • /
    • pp.9-16
    • /
    • 2020
  • In this paper, we propose a prototype design and implementation of a fire detection algorithm using multiple sensors. The proposed topic detection system determines fire by applying rules based on data from multiple sensors. The fire takes about 3 to 5 minutes, which is the optimal time for fire detection. This means that timely identification of potential fires is important for fire management. However, current fire detection devices are very vulnerable to false alarms because they rely on a single sensor to detect smoke or heat. Recently, with the development of IoT technology, it is possible to integrate multiple sensors into a fire detector. In addition, the fire detector has been developed with a smart technology that can communicate with other objects and perform programmed tasks. The prototype was produced with a success rate of 90% and a false alarm rate of 10% based on 10 actual experiments.

M & S Tool for Analyzing the Detection Performance in Bistatic Radar (바이스태틱 레이더의 탐지 성능 분석용 M & S Tool)

  • Kim, Kwan-Soo;Youn, Jae-Hyuk;Yang, Hoon-Gee;Chung, Young-Seek;Lee, Won-Woo;Bae, Kyung-Bin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.631-640
    • /
    • 2011
  • This paper proposes a M & S Tool for simulating the detection performance in the bistatic radar system. After examing the interrelationship among the bistatic radar parameters, $P_d$(probability of detection), $P_{fa}$(probability of false alarm) and ��SNR of the received signal, we analyze the range of the bistatic radar range product and range sum. We derive the number of integration of the received pulses that satisfies the required detection performance of the bistatic radar system, along with the analysis of the performance degradation in the jammer scenario. Finally, the analyzed results are implemented in the M & S Tool which consists of 4 modules.

Deep Learning Based Sign Detection and Recognition for the Blind (시각장애인을 위한 딥러닝 기반 표지판 검출 및 인식)

  • Jeon, Taejae;Lee, Sangyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • This paper proposes a deep learning algorithm based sign detection and recognition system for the blind. The proposed system is composed of sign detection stage and sign recognition stage. In the sign detection stage, aggregated channel features are extracted and AdaBoost classifier is applied to detect regions of interest of the sign. In the sign recognition stage, convolutional neural network is applied to recognize the regions of interest of the sign. In this paper, the AdaBoost classifier is designed to decrease the number of undetected signs, and deep learning algorithm is used to increase recognition accuracy and which leads to removing false positives which occur in the sign detection stage. Based on our experiments, proposed method efficiently decreases the number of false positives compared with other methods.

Real-Time License Plate Detection Based on Faster R-CNN (Faster R-CNN 기반의 실시간 번호판 검출)

  • Lee, Dongsuk;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.511-520
    • /
    • 2016
  • Automatic License Plate Detection (ALPD) is a key technology for a efficient traffic control. It is used to improve work efficiency in many applications such as toll payment systems and parking and traffic management. Until recently, the hand-crafted features made for image processing are used to detect license plates in most studies. It has the advantage in speed. but can degrade the detection rate with respect to various environmental changes. In this paper, we propose a way to utilize a Faster Region based Convolutional Neural Networks (Faster R-CNN) and a Conventional Convolutional Neural Networks (CNN), which improves the computational speed and is robust against changed environments. The module based on Faster R-CNN is used to detect license plate candidate regions from images and is followed by the module based on CNN to remove False Positives from the candidates. As a result, we achieved a detection rate of 99.94% from images captured under various environments. In addition, the average operating speed is 80ms/image. We implemented a fast and robust Real-Time License Plate Detection System.