• Title/Summary/Keyword: False Detection

Search Result 1,207, Processing Time 0.027 seconds

A Criterion on Profiling for Anomaly Detection (이상행위 탐지를 위한 프로파일링 기준)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.544-551
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose a criterion on profiling for intrusion detection system using anomaly detection. We present the cause of false positive on profiling and propose anomaly method to control this. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using pattern database.

A Study on Flame and Smoke Detection Method of a Tunnel Fire (터널 화재의 화염 및 연기 검출 기법 연구)

  • Lee, Jeong-Hun;Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1027-1028
    • /
    • 2008
  • In this paper, we proposed image-processing technique for automatic real-time fire and smoke detection in tunnel fire environment. To minimize false detection of fire in tunnel we used motion information of video sequence. And this makes it possible to detect exact position of event in early stage with detection, test, and verification procedures. In addition, by comparing false detection elimination results of each step, we have proved the validity and efficiency of proposed algorithm.

  • PDF

Design and Performance Analysis of Energy-Aware Distributed Detection Systems with Multiple Passive Sonar Sensors (다중 수동 소나 센서 기반 에너지 인식 분산탐지 체계의 설계 및 성능 분석)

  • Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.9-21
    • /
    • 2010
  • In this paper, optimum design of distributed detection is considered for a parallel sensor network system consisting of a fusion center and multiple passive sonar nodes. Nonrandom fusion rules are employed as the fusion rules of the sensor network. For the nonrandom fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is investigated that maximizes the probability of detection under a constraint on energy consumption due to false alarms. It is also investigated through numerical experiments how signal strength, false alarm probability, and the distance between three sensor nodes affect the system detection performances.

Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload

  • Kakavand, Mohsen;Mustapha, Norwati;Mustapha, Aida;Abdullah, Mohd Taufik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3884-3910
    • /
    • 2016
  • Intrusion Detection System (IDS) in general considers a big amount of data that are highly redundant and irrelevant. This trait causes slow instruction, assessment procedures, high resource consumption and poor detection rate. Due to their expensive computational requirements during both training and detection, IDSs are mostly ineffective for real-time anomaly detection. This paper proposes a dimensionality reduction technique that is able to enhance the performance of IDSs up to constant time O(1) based on the Principle Component Analysis (PCA). Furthermore, the present study offers a feature selection approach for identifying major components in real time. The PCA algorithm transforms high-dimensional feature vectors into a low-dimensional feature space, which is used to determine the optimum volume of factors. The proposed approach was assessed using HTTP packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome demonstrated that our proposed anomaly detection achieved promising results with 97% detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection also achieved comparable performance in terms of computational complexity when compared to three state-of-the-art anomaly detection systems.

Road Surface Marking Detection for Sensor Fusion-based Positioning System (센서 융합 기반 정밀 측위를 위한 노면 표시 검출)

  • Kim, Dongsuk;Jung, Hogi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.107-116
    • /
    • 2014
  • This paper presents camera-based road surface marking detection methods suited to sensor fusion-based positioning system that consists of low-cost GPS (Global Positioning System), INS (Inertial Navigation System), EDM (Extended Digital Map), and vision system. The proposed vision system consists of two parts: lane marking detection and RSM (Road Surface Marking) detection. The lane marking detection provides ROIs (Region of Interest) that are highly likely to contain RSM. The RSM detection generates candidates in the regions and classifies their types. The proposed system focuses on detecting RSM without false detections and performing real time operation. In order to ensure real time operation, the gating varies for lane marking detection and changes detection methods according to the FSM (Finite State Machine) about the driving situation. Also, a single template matching is used to extract features for both lane marking detection and RSM detection, and it is efficiently implemented by horizontal integral image. Further, multiple step verification is performed to minimize false detections.

DGA-based Botnet Detection Technology using N-gram (N-gram을 활용한 DGA 기반의 봇넷 탐지 방안)

  • Jung Il Ok;Shin Deok Ha;Kim Su Chul;Lee Rock Seok
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.145-154
    • /
    • 2022
  • Recently, the widespread proliferation and high sophistication of botnets are having serious consequences not only for enterprises and users, but also for cyber warfare between countries. Therefore, research to detect botnets is steadily progressing. However, the DGA-based botnet has a high detection rate with the existing signature and statistics-based technology, but also has a high limit in the false positive rate. Therefore, in this paper, we propose a detection model using text-based n-gram to detect DGA-based botnets. Through the proposed model, the detection rate, which is the limit of the existing detection technology, can be increased and the false positive rate can also be minimized. Through experiments on large-scale domain datasets and normal domains used in various DGA botnets, it was confirmed that the performance was superior to that of the existing model. It was confirmed that the false positive rate of the proposed model is less than 2 to 4%, and the overall detection accuracy and F1 score are both 97.5%. As such, it is expected that the detection and response capabilities of DGA-based botnets will be improved through the model proposed in this paper.

A Comparative Study on Artificial in Intelligence Model Performance between Image and Video Recognition in the Fire Detection Area (화재 탐지 영역의 이미지와 동영상 인식 사이 인공지능 모델 성능 비교 연구)

  • Jeong Rok Lee;Dae Woong Lee;Sae Hyun Jeong;Sang Jeong
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.968-975
    • /
    • 2023
  • Purpose: We would like to confirm that the false positive rate of flames/smoke is high when detecting fires. Propose a method and dataset to recognize and classify fire situations to reduce the false detection rate. Method: Using the video as learning data, the characteristics of the fire situation were extracted and applied to the classification model. For evaluation, the model performance of Yolov8 and Slowfast were compared and analyzed using the fire dataset conducted by the National Information Society Agency (NIA). Result: YOLO's detection performance varies sensitively depending on the influence of the background, and it was unable to properly detect fires even when the fire scale was too large or too small. Since SlowFast learns the time axis of the video, we confirmed that detects fire excellently even in situations where the shape of an atypical object cannot be clearly inferred because the surrounding area is blurry or bright. Conclusion: It was confirmed that the fire detection rate was more appropriate when using a video-based artificial intelligence detection model rather than using image data.

Local and Global Information Exchange for Enhancing Object Detection and Tracking

  • Lee, Jin-Seok;Cho, Shung-Han;Oh, Seong-Jun;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1400-1420
    • /
    • 2012
  • Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.

A Case Study of the Characteristics of Fire-Detection Signals of IoT-based Fire-Detection System (사례 분석을 통한 IoT 기반 화재탐지시스템의 화재 감지신호 특성)

  • Park, Seung Hwan;Kim, Doo Hyun;Kim, Sung Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.16-23
    • /
    • 2022
  • This study aims to provide a fundamental material for identifying fire and no-fire signals using the detection signal characteristics of IoT-based fire-detection systems. Unlike analog automatic fire-detection equipment, IoT-based fire-detection systems employ wireless digital communication and are connected to a server. If a detection signal exceeds a threshold value, the measured values are saved to a server within seconds. This study was conducted with the detection data saved from seven fire accidents that took place in traditional markets from 2020 to 2021, in addition to 233 fire alarm data that have been saved in the K institute from 2016 to 2020. The saved values demonstrated variable and continuous VC-Signals. Additionally, we discovered that the detection signals of two fire accidents in the K institution had a VC-Signal. In the 233 fire alarms that took place over the span of 5 years, 31% of smoke alarms and 30% of temperature alarms demonstrated a VC-Signal. Therefore, if we selectively recognize VC-Signals as fire signals, we can reduce about 70% of false alarms.

(Automatic detection of pulmonary nodules in X-ray chest images) (흉부 X선 영상에서의 폐 노쥴 자동 탐지 기법)

  • Sung, Won;Kim, Eui-Jung;Park, Jong-Won
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1279-1286
    • /
    • 2002
  • Generally, radiologists can fail to detect pulmonary nodules in up to 30%. If an automatic system can inform the radiologists of thelocations of the doubtful nodules in the X-ray chest images, the frequency of mistakenly observed numbers of the nodules can be potentially reduced. This software is using morphological filtering and two feature-extraction techniques. The morphological filtering is the first process, which subsequently adds the operations of erosion and dilation to the original images so that this process can transform the original X-ray chest images into manageable ones. The false-positives are frequently being mistaken as nodules but actually these are not real nodules. The second process is the two feature-extraction techniques which are used to reduce the false-positives. Therefore, this system will make more effective detection of pulmonary nodules by reducing the false-positives when applied to the X-ray chest images which is difficult to get accurate detection.

  • PDF