International Journal of Advanced Culture Technology
/
제11권1호
/
pp.370-375
/
2023
As we enter a super-aged society, studies are being conducted to reduce complications and deaths caused by falls in elderly adults. Research is being conducted on interventions for preventing falls in the elderly, wearable devices for detecting falls, and methods for improving the performance of fall detection algorithms. Wearable devices for detecting falls of the elderly generally use gyro sensors. In addition, to improve the performance of the fall detection algorithm, an artificial intelligence algorithm is applied to the x, y, z coordinate data collected from the gyro sensor. In this paper, we develop a wearable device that uses a gyro sensor, body temperature, and heart rate sensor for health management as well as fall detection for the elderly. In addition, we develop a fall detection and health management system that works with wearable devices and a guardian's mobile app to improve the performance of the fall detection algorithm and provide health information to guardians.
Journal of information and communication convergence engineering
/
제11권3호
/
pp.199-206
/
2013
An emergency monitoring system for the elderly, which uses acceleration data measured with an accelerometer, angular velocity data measured with a gyroscope, and heart rate measured with an electrocardiogram, is proposed. The proposed fall detection algorithm uses multiple parameter combinations in which all parameters, calculated using tri-axial accelerations and bi-axial angular velocities, are above a certain threshold within a time period. Further, we propose an emergency detection algorithm that monitors the movements of the fallen elderly person, after a fall is detected. The results show that the proposed algorithms can distinguish various types of falls from activities of daily living with 100% sensitivity and 98.75% specificity. In addition, when falls are detected, the emergency detection rate is 100%. This suggests that the presented fall and emergency detection method provides an effective automatic fall detection and emergency alarm system. The proposed algorithms are simple enough to be implemented into an embedded system such as 8051-based microcontroller with 128 kbyte ROM.
구글사에서 출시된 ML Kit API의 Pose detection를 사용한 영상기반 낙상 알고리즘을 제안한다. Pose detection 알고리듬을 사용하여 추출된 신체의 33개의 3차원 특징점을 활용하여 낙상을 인식한다. 추출된 특징점을 분석하여 낙상을 인식하는 알고리듬은 k-NN을 사용한다. 영상의 크기와 영상내의 인체의 크기에 영향을 받지 않도록 정규화과정을 거치며 특징점들의 상대적인 움직임을 분석하여 낙상을 인식한다. 본 실험을 위해 사용한 13개의 테스트 영상중 13개의 영상에서 낙상을 인식하여 100%의 성공률을 보였다.
본 논문은 영상처리 기반의 낙상 감지 알고리즘의 설계 및 구현에 관한 내용을 기술한다. 영상처리 기반의 낙상 감지 알고리즘은 카메라로 획득한 입력 영상을 그레이 스케일 변환 후 배경차분과 이진화를 통해 객체를 분리하고, 라벨링을 통해 인체를 인식한다. 인식된 인체는 출력 영상으로 확인이 가능하며 낙상을 감지하게 되면 알람이 발생한다. 컴퓨터 시뮬레이션을 통하여 제안한 알고리즘을 실험한 결과 90%의 검출율을 보여주었다. DSP 영상처리 보드에 구현한 시제품 시험을 통하여 기능을 검증함으로서 실용화 가능성을 확인하였다.
영상 정보를 이용한 자동 낙상 감지 알고리즘을 제안한다. 자동으로 낙상을 감지하기 위한 낙상 특징 파라미터를 추출하기 위해서 영상정보를 광류 방식에 적용하여 움직임 값들을 추출하고 이 움직임 값들에 대한 전체적인 변화의 정도와 기울기, 중심점을 주성분 분석 방법으로 계산한다. 계산된 고유값과 고유 벡터를 사용하여 6가지 낙상 특징 파라미터를 정의한다. 이 낙상특징파라미터가 미리 정해둔 임계값을 초과하는 경우를 낙상으로 판단하는 단순 임계치 방법과 낙상특징파라미터를 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용시켜 낙상을 판단하는 방법과 단순임계치와 은닉 마르코프 모델을 결합한 낙상 감지 방법을 제안하고 그 결과를 비교 및 분석한다. 단순 임계치와 은닉 마르코프 모델을 결합한 방법은 단순임계치 방법으로 낙상 가능한 행동들을 결정하고 이 결정된 낙상 행동들만을 은닉 마르코프 모델을 적용하여 낙상을 감지한다. 이 방법은 계산량을 줄이면서 감지 정확도를 유지하는 결과를 보인다.
If we use a smartphone to analyze and detect falling, it is a huge advantage that the person with a sensor attached to one's body is free from awareness of difference and limitation of space, unlike attaching sensors on certain fixed areas. In this paper, we suggested effective posture analysis of smartphone users, and fall detecting system. Suggested algorithm enables to detect falling accurately by using the fact that instantaneous change of acceleration sensor is different according to user's posture. Since mobile applications working on smart phones are low in compatibility according to mobile platforms, it is a constraint that new development is needed which is suitable for sensor equipment's characteristics. In this paper, we suggested posture analysis algorithm using smartphones to solve the problems related to user's inconvenience and limitation of development according to sensor equipment's characteristics. Also, we developed fall detection system with the suggested algorithm, using hybrid mobile application which is not limited to platform.
본 논문에서는 움직임 벡터를 이용한 낙상 감지 시스템에 관해 기술한다. 두드러진 움직임을 위한 가중치 차영상 기법, 움직임 벡터를 이용하여 인간이라고 판단되는 블랍을 검출하고, 추출된 움직임 벡터를 이용하여 낙상 여부를 판단한다. 기존의 영상 기반 낙상 감지 시스템의 경우 특정 방향으로 낙상이 발생하는 경우에만 낙상 감지에 성공하였지만 제안 시스템의 경우 다양한 각도에서 낙상이 발생하여도 상황 판단이 가능하다는 장점이 있다. 실험을 위해서 150개의 상황을 연출하였으며, 약 85% ~ 97.1% 낙상 상황 판단 성공률을 보였다.
The population of elderly people increases rapidly as our society moves towards the aged one. Healthcare for the elderly becomes an important issue and falling down is one of the critical problems although not well recognized. In this study, a fall detection system was developed using a 3-axis accelerometer. Analyzing fall patterns, we took into account the degree of impact, posture angle, the repetitions of similar movements and the activities after a potential fall and proposed an algorithm of fall detection. Information of the fall sensor was sent to a remote healthcare server through the wireless networks of Zigbee and WLAN. Our system was designed to monitor multiples users. 12 persons participated in experiment and each one performed 24 different movements. Our proposed algorithm was compared with other reported ones. Our method produced the excellent results having a sensitivity of 96.4 % and a specificity of 100 % whereas other methods had a sensitivity range between 87.5 % and 94.8 % and a specificity range between 63.5 % and 83.3 %.
Kim, Heegwang;Park, Jinho;Park, Hasil;Paik, Joonki
IEIE Transactions on Smart Processing and Computing
/
제5권5호
/
pp.327-330
/
2016
Currently, the world's elderly population continues to grow at a dramatic rate. As the number of senior citizens increases, detection of someone falling has attracted increasing attention for visual surveillance systems. This paper presents a novel fall-detection algorithm using motion estimation and an integrated spatiotemporal energy map of the object region. The proposed method first extracts a human region using a background subtraction method. Next, we applied an optical flow algorithm to estimate motion vectors, and an energy map is generated by accumulating the detected human region for a certain period of time. We can then detect a fall using k-nearest neighbor (kNN) classification with the previously estimated motion information and energy map. The experimental results show that the proposed algorithm can effectively detect someone falling in any direction, including at an angle parallel to the camera's optical axis.
Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.