• Title/Summary/Keyword: Fair Allocation

Search Result 119, Processing Time 0.023 seconds

Buffer Management Mechanism Using DT-DFBA Algorithm for GFR Service (GFR 서비스를 위한 DT-DFBA 버퍼관리 메커니즘)

  • 안상규;최승권;신승수;조용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.474-485
    • /
    • 2002
  • To keep simplicity that needs for GFR service and improve fairness of FIFO based buffer management algorithm, we propose a new LBO threshold decision mechanism. Proposed mechanism uses dynamic threshold that are adjusted according to the sum of active VC's weight. We reformed DT-DFBA(Differential Threshold-Differential Fair Buffer Allocation) algorithm using proposed LBO threshold decision mechanism with existing DFBA algorithm.

A Hybrid Upstream Bandwidth Allocation Method for Multimedia Communications in EPONs

  • Baek, Jinsuk;Kwak, Min Gyung;Fisher, Paul S.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • The Ethernet Passive Optical Network (EPON) has been considered to be one of the most promising solutions for the implementation of the Fiber To The Home (FTTH) technology designed to ameliorate the "last mile" bandwidth bottleneck. In the EPON network, an efficient and fair bandwidth allocation is a very important issue, since multiple optical network units (ONUs) share a common upstream channel for packet transmission. To increase bandwidth utilization, an EPON system must provide a way to adaptively allocate the upstream bandwidth among multiple ONUs in accordance to their bandwidth demands and requirements. We present a new hybrid method that satisfies these requirements. The advantage of our method comes from the consideration of application-specific bandwidth allocation and the minimization of the idle bandwidth. Our simulation results show that our proposed method outperforms existing dynamic bandwidth allocation methods in terms of bandwidth utilization.

  • PDF

An Approach for Bridge Construction Cost Allocation Considering Traffic Load and Traffic Capacity (교통량과 교통하중을 고려한 교량건설비용의 할당)

  • Lee, Dong-Ju;Hwang, In-Keuk
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • The objective of bridge construction cost allocation is to distribute in a fair and rational manner the bridge construction costs among those vehicles using the bridge. In most bridge construction cost allocation studies, bridge construction costs are mainly distributed according to traffic load(gross vehicle weight), without any consideration of bridge capacity requirements(the number of lanes). In this paper, a bridge cost allocation method for considering both traffic capacity and traffic loads is developed. The proposed method is based on cooperative game theory, particularly two concepts known as the Aumann-Shapley (A-S) value and Shapley value. This method can help to analyze the impact of traffic capacity costs. By applying the proposed method to an example, traffic capacity cost is found to be high so that traffic capacity should be considered to allocate the bridge construction costs to vehicle classes in a more equitable manner.

A study on improving the bandwidth utilization of fair packet schedulers (공평 패킷 스케줄러의 대역폭 이용 효율 개선에 관한 연구)

  • Kim Tae-Joon;Kim Hwang-Rae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.331-338
    • /
    • 2006
  • Most fair packet schedulers supporting quality-of-services of real-time multimedia applications are based on the finish time design scheme in which the expected transmission finish time of each packet is used as its timestamp. This scheme can adjust the latency of a flow with raising the flow's scheduling rate but it may suffer from severe bandwidth loss due to the coupled rate and delay allocation. This paper first introduces the concept of delay resource, and then proposes a scheduling method to improve the bandwidth utilization in which delay resource being lost due to the coupled allocation is transformed into bandwidth one. The performance evaluation shows that the proposed method gives higher bandwidth utilization by up to 50%.

A Dynamic Bandwidth Allocation Scheme based on Playback Buffer Level in a Distributed Mobile Multimedia System (분산 모바일 멀티미디어 시스템에서 재생 버퍼 수준에 기반한 동적 대역폭 할당 기법)

  • Kim, Jin-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.413-420
    • /
    • 2010
  • In this paper, we propose a scheme for dynamic allocating network bandwidth based on the playback buffer levels of the clients in a distributed mobile multimedia system. In this scheme, the amount of bandwidth allocated to serve a video request depends on the buffer level of the requesting client. If the buffer level of a client is low or high temporarily, more or less bandwidth will be allocated to serve it with an objective to make it more adaptive to the playback situation of this client. By employing the playback buffer level based bandwidth allocation policy, fair services can also be provided to the clients. In order to support high quality video playbacks, video frames must be transported to the client prior to their playback times. The main objectives in this bandwidth allocation scheme are to enhance the quality of service and performance of individual video playback such as to minimize the number of dropped video frames and at the same time to provide fair services to all the concurrent video requests. The performance of the proposed scheme is compared with that of other static bandwidth allocation scheme through extensive simulation experiments, resulting in the 4-9% lower ratio of frames dropped according to the buffer level.

A Session Allocation Algorithm for Fair Bandwidth Distribution of Multiple Shared Links (다중 공유 링크들의 공정한 대역폭 분배를 위한 세션할당 알고리즘)

  • Shim, Jae-Hong;Choi, Kyung-Hee;Jung, Gi-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.253-262
    • /
    • 2004
  • In this paper, a session allocation algorithm for a switch with multiple shared links is proposed. The algorithm guarantees the reserved bandwidth to each service class and keeps the delay of sessions belonging to a service class as close as possible even if the sessionsare allocated to different shared links. To support these qualities of services, a new scheduling model for multiple shared links is defined and a session allocation algorithm to decide a shared link to be allocated to a new session on the connection establishmentis developed based on the model. The proposed heuristic algorithm allocates a session to a link including the subclass with the shortest (expected) delay that subclasses of the service class the session belongs to will experience. Simulation results verify that a switch with multiple shared links hiring the proposed algorithm provides service classes with fairer bandwidth allocation and higher throughput, and guarantees reserved bandwidth better than the switch hiring other session algorithms. It also guarantees very similarservice delay to the sessions in the same service class.

A Fair Drop-tail Bandwidth Allocation Algorithm for High-speed Routers (고속 라우터를 위한 Drop-tail방식의 공정한 대역할당 알고리즘)

  • 이원일;윤종호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6A
    • /
    • pp.910-917
    • /
    • 2000
  • Because the random early detection(RED) algorithm deals all flows with the same best-effort traffic characteristic, it can not correctly control the output link bandwidth for the flows with different traffic characteristics. To remedy this problem, several per-flow algorithms have been proposed. In this paper, we propose a new per-flow type Fair Droptail algorithm which can fairly allocate bandwidth among flows over a shared output link. By evenly allocating buffers per flow, the Fair Droptail can restrict a flow not to use more bandwidth than others. In addition, it can be simply implemented even if it employs the per-flow state mechanism, because the Fair Droptail only keeps each information of flow in active state.

  • PDF

Performance Comparison among Bandwidth Allocation Schemes using Cooperative Game Theory (협력 게임 이론을 이용한 대역폭 할당 기법의 성능 비교)

  • Park, Jae-Sung;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.18C no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Since the game theory provides a theoretical ground to distribute a shared resource between demanding users in a fair and efficient manner, it has been used for the bandwidth allocation problem in a network. However, the bandwidth allocation schemes with different game theory assign different amount of bandwidth in the same operational environments. However, only the mathematical framework is adopted when a bandwidth allocation scheme is devised without quantitatively comparing the results when they applied to the bandwidth allocation problem. Thus, in this paper, we compare the characteristics of the bandwidth allocation schemes using the bankrupt game theory and the bargaining game theory when they applied to the situation where nodes are competing for the bandwidth in a network. Based on the numerical results, we suggest the future research direction.

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.